Subtyping of sarcomas based on pathway enrichment scores in bulk and single cell transcriptomes

Author:

Li Shengwei,Liu Qian,Zhou Haiying,Lu Hui,Wang XiaoshengORCID

Abstract

Abstract Background Sarcomas are highly heterogeneous in molecular, pathologic, and clinical features. However, a classification of sarcomas by integrating different types of pathways remains mostly unexplored. Methods We performed hierarchical clustering analysis of sarcomas based on the enrichment scores of 14 pathways involved in immune, stromal, DNA damage repair (DDR), and oncogenic signatures in three bulk tumor transcriptome datasets. Results Consistently in the three datasets, sarcomas were classified into three subtypes: Immune Class (Imm-C), Stromal Class (Str-C), and DDR Class (DDR-C). Imm-C had the strongest anti-tumor immune signatures and the lowest intratumor heterogeneity (ITH); Str-C showed the strongest stromal signatures, the highest genomic stability and global methylation levels, and the lowest proliferation potential; DDR-C had the highest DDR activity, expression of the cell cycle pathway, tumor purity, stemness scores, proliferation potential, and ITH, the most frequent TP53 mutations, and the worst survival. We further validated the stability and reliability of our classification method by analyzing a single cell RNA-Seq (scRNA-seq) dataset. Based on the expression levels of five genes in the pathways of T cell receptor signaling, cell cycle, mismatch repair, focal adhesion, and calcium signaling, we built a linear risk scoring model (ICMScore) for sarcomas. We demonstrated that ICMScore was an adverse prognostic factor for sarcomas and many other cancers. Conclusions Our classification method provides novel insights into tumor biology and clinical implications for sarcomas.

Funder

Natural Science Foundation of Zhejiang Province

Alibaba Youth Studio Project

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3