Multipredictor risk models for predicting individual risk of Alzheimer’s disease

Author:

Hou Xiao-He,Suckling John,Shen Xue-Ning,Liu Yong,Zuo Chuan-Tao,Huang Yu-Yuan,Li Hong-Qi,Wang Hui-Fu,Tan Chen-Chen,Cui Mei,Dong Qiang,Tan Lan,Yu Jin-TaiORCID,

Abstract

Abstract Background Early prevention of Alzheimer’s disease (AD) is a feasible way to delay AD onset and progression. Information on AD prediction at the individual patient level will be useful in AD prevention. In this study, we aim to develop risk models for predicting AD onset at individual level using optimal set of predictors from multiple features. Methods A total of 487 cognitively normal (CN) individuals and 796 mild cognitive impairment (MCI) patients were included from Alzheimer's Disease Neuroimaging Initiative. All the participants were assessed for clinical, cognitive, magnetic resonance imaging and cerebrospinal fluid (CSF) markers and followed for mean periods of 5.6 years for CN individuals and 4.6 years for MCI patients to ascertain progression from CN to incident prodromal stage of AD or from MCI to AD dementia. Least Absolute Shrinkage and Selection Operator Cox regression was applied for predictors selection and model construction. Results During the follow-up periods, 139 CN participants had progressed to prodromal AD (CDR ≥ 0.5) and 321 MCI patients had progressed to AD dementia. In the prediction of individual risk of incident prodromal stage of AD in CN individuals, the AUC of the final CN model was 0.81 within 5 years. The final MCI model predicted individual risk of AD dementia in MCI patients with an AUC of 0.92 within 5 years. The models were also associated with longitudinal change of Mini-Mental State Examination (p < 0.001 for CN and MCI models). An Alzheimer’s continuum model was developed which could predict the Alzheimer’s continuum for individuals with normal AD biomarkers within 3 years with high accuracy (AUC = 0.91). Conclusions The risk models were able to provide personalized risk for AD onset at each year after evaluation. The models may be useful for better prevention of AD.

Funder

Science and Technology Innovation 2030 Major Projects

National Natural Science Foundation of China

National Key R&D Program of China

Shanghai Municipal Science and Technology Major Project

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3