Author:
Wang Yuhang,Wang Binbin,Zhou Fengqi,Lv Kun,Xu Xiupeng,Cao Wenping
Abstract
Abstract
Background
Circular RNAs (circRNAs) have been shown to be essential for the emergence and growth of different cancers. However, further research is required to validate the function of circRNA in glioblastoma (GBM).
Methods
CircNDC80 expression in both normal brain tissues (NBTs) and glioma tissues was determined using real-time PCR. The impact of circNDC80 on GBM cell proliferation, migration, and invasion was then confirmed by CCK-8, colony formation, EdU incorporation, Transwell, and wound healing assays. To determine how circNDC80 affects the capacity of glioma stem cells (GSCs) to maintain their stemness and self-renewal, a CellTiter-Glo assay, clonogenic assay and extreme limiting dilution assay were utilized. To ascertain the impact of circNDC80 in vivo, intracranial xenograft models were established.
Results
When compared to NBT, glioblastoma tissue had a higher level of circNDC80 expression. In functional assays, circNDC80 promoted glioblastoma cell proliferation, migration, and invasion, while sustaining the stemness and fostering the self-renewal of glioma stem cells. In addition, a dual luciferase reporter assay and circRIP were used to verify that circNDC80 simultaneously affects the expression of ECE1 mRNA by sponging miR-139-5p, and a rescue experiment was used to verify the above results further.
Conclusions
According to our research, circNDC80 is an oncogenic factor that promotes glioblastoma through the miR-139-5p/ECE1 pathway. This implies that circNDC80 may be employed as a novel therapeutic target and a possible predictive biomarker.
Funder
National Outstanding Youth Science Fund Project of National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province for Distinguished Young Scholars
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献