Estrogen receptors promote NSCLC progression by modulating the membrane receptor signaling network: a systems biology perspective

Author:

Gao Xiujuan,Cai Yue,Wang Zhuo,He Wenjuan,Cao Sisi,Xu Rong,Chen HuiORCID

Abstract

Abstract Background Estrogen receptors (ERs) are thought to play an important role in non-small cell lung cancer (NSCLC). However, the effect of ERs in NSCLC is still controversial and needs further investigation. A new consideration is that ERs may affect NSCLC progression through complicated molecular signaling networks rather than individual targets. Therefore, this study aims to explore the effect of ERs in NSCLC from the perspective of cancer systems biology. Methods The gene expression profile of NSCLC samples in TCGA dataset was analyzed by bioinformatics method. Variations of cell behaviors and protein expression were detected in vitro. The kinetic process of molecular signaling network was illustrated by a systemic computational model. At last, immunohistochemical (IHC) and survival analysis was applied to evaluate the clinical relevance and prognostic effect of key receptors in NSCLC. Results Bioinformatics analysis revealed that ERs might affect many cancer-related molecular events and pathways in NSCLC, particularly membrane receptor activation and signal transduction, which might ultimately lead to changes in cell behaviors. Experimental results confirmed that ERs could regulate cell behaviors including cell proliferation, apoptosis, invasion and migration; ERs also regulated the expression or activation of key members in membrane receptor signaling pathways such as epidermal growth factor receptor (EGFR), Notch1 and Glycogen synthase kinase-3β/β-Catenin (GSK3β/β-Catenin) pathways. Modeling results illustrated that the promotive effect of ERs in NSCLC was implemented by modulating the signaling network composed of EGFR, Notch1 and GSK3β/β-Catenin pathways; ERs maintained and enhanced the output of oncogenic signals by adding redundant and positive-feedback paths into the network. IHC results echoed that high expression of ERs, EGFR and Notch1 had a synergistic effect on poor prognosis of advanced NSCLC. Conclusions This study indicated that ERs were likely to promote NSCLC progression by modulating the integrated membrane receptor signaling network composed of EGFR, Notch1 and GSK3β/β-Catenin pathways and then affecting tumor cell behaviors. It also complemented the molecular mechanisms underlying the progression of NSCLC and provided new opportunities for optimizing therapeutic scheme of NSCLC.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3