Radiogenomic analysis of prediction HER2 status in breast cancer by linking ultrasound radiomic feature module with biological functions

Author:

Cui Hao,Sun Yue,Zhao Dantong,Zhang Xudong,Kong Hanqing,Hu Nana,Wang Panting,Zuo Xiaoxuan,Fan Wei,Yao Yuan,Fu Baiyang,Tian Jiawei,Wu Meixin,Gao Yue,Ning Shangwei,Zhang LeiORCID

Abstract

Abstract Background Human epidermal growth factor receptor 2 (HER2) overexpressed associated with poor prognosis in breast cancer and HER2 has been defined as a therapeutic target for breast cancer treatment. We aimed to explore the molecular biological information in ultrasound radiomic features (URFs) of HER2-positive breast cancer using radiogenomic analysis. Moreover, a radiomics model was developed to predict the status of HER2 in breast cancer. Methods This retrospective study included 489 patients who were diagnosed with breast cancer. URFs were extracted from a radiomics analysis set using PyRadiomics. The correlations between differential URFs and HER2-related genes were calculated using Pearson correlation analysis. Functional enrichment of the identified URFs-correlated HER2 positive-specific genes was performed. Lastly, the radiomics model was developed based on the URF-module mined from auxiliary differential URFs to assess the HER2 status of breast cancer. Results Eight differential URFs (p < 0.05) were identified among the 86 URFs extracted by Pyradiomics. 25 genes that were found to be the most closely associated with URFs. Then, the relevant biological functions of each differential URF were obtained through functional enrichment analysis. Among them, Zone Entropy is related to immune cell activity, which regulate the generation of calcification in breast cancer. The radiomics model based on the Logistic classifier and URF-module showed good discriminative ability (AUC = 0.80, 95% CI). Conclusion We searched for the URFs of HER2-positive breast cancer, and explored the underlying genes and biological functions of these URFs. Furthermore, the radiomics model based on the Logistic classifier and URF-module relatively accurately predicted the HER2 status in breast cancer.

Funder

The National Natural Science Foundation of China

College Students' Innovative Entrepreneurial Training Plan Program

Outstanding Youth Program of Heilongjiang Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3