Abstract
Abstract
Background
Human epidermal growth factor receptor 2 (HER2) overexpressed associated with poor prognosis in breast cancer and HER2 has been defined as a therapeutic target for breast cancer treatment. We aimed to explore the molecular biological information in ultrasound radiomic features (URFs) of HER2-positive breast cancer using radiogenomic analysis. Moreover, a radiomics model was developed to predict the status of HER2 in breast cancer.
Methods
This retrospective study included 489 patients who were diagnosed with breast cancer. URFs were extracted from a radiomics analysis set using PyRadiomics. The correlations between differential URFs and HER2-related genes were calculated using Pearson correlation analysis. Functional enrichment of the identified URFs-correlated HER2 positive-specific genes was performed. Lastly, the radiomics model was developed based on the URF-module mined from auxiliary differential URFs to assess the HER2 status of breast cancer.
Results
Eight differential URFs (p < 0.05) were identified among the 86 URFs extracted by Pyradiomics. 25 genes that were found to be the most closely associated with URFs. Then, the relevant biological functions of each differential URF were obtained through functional enrichment analysis. Among them, Zone Entropy is related to immune cell activity, which regulate the generation of calcification in breast cancer. The radiomics model based on the Logistic classifier and URF-module showed good discriminative ability (AUC = 0.80, 95% CI).
Conclusion
We searched for the URFs of HER2-positive breast cancer, and explored the underlying genes and biological functions of these URFs. Furthermore, the radiomics model based on the Logistic classifier and URF-module relatively accurately predicted the HER2 status in breast cancer.
Funder
The National Natural Science Foundation of China
College Students' Innovative Entrepreneurial Training Plan Program
Outstanding Youth Program of Heilongjiang Natural Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献