PLA2G4A and ACHE modulate lipid profiles via glycerophospholipid metabolism in platinum-resistant gastric cancer

Author:

Chen Menglin,Zhang Cancan,Li Huaizhi,Zheng Shanshan,Li Yaqi,Yuan Mengyun,Chen Yuxuan,Wu Jian,Sun QingminORCID

Abstract

Abstract Background Bioactive lipids involved in the progression of various diseases. Nevertheless, there is still a lack of biomarkers and relative regulatory targets. The lipidomic analysis of the samples from platinum-resistant in gastric cancer patients is expected to help us further improve our understanding of it. Methods We employed LC–MS based untargeted lipidomic analysis to search for potential candidate biomarkers for platinum resistance in GC patients. Partial least squares discriminant analysis (PLS-DA) and variable importance in projection (VIP) analysis were used to identify differential lipids. The possible molecular mechanisms and targets were obtained by metabolite set enrichment analysis and potential gene network screened. Finally, verified them by immunohistochemical of a tissue microarray. Results There were 71 differential lipid metabolites identified in GC samples between the chemotherapy-sensitivity group and the chemotherapy resistance group. According to Foldchange (FC) value, VIP value, P values (FC > 2, VIP > 1.5, p < 0.05), a total of 15 potential biomarkers were obtained, including MGDG(43:11)-H, Cer(d18:1/24:0) + HCOO, PI(18:0/18:1)-H, PE(16:1/18:1)-H, PE(36:2) + H, PE(34:2p)-H, Cer(d18:1 + hO/24:0) + HCOO, Cer(d18:1/23:0) + HCOO, PC(34:2e) + H, SM(d34:0) + H, LPC(18:2) + HCOO, PI(18:1/22:5)-H, PG(18:1/18:1)-H, Cer(d18:1/24:0) + H and PC(35:2) + H. Furthermore, we obtained five potential key targets (PLA2G4A, PLA2G3, DGKA, ACHE, and CHKA), and a metabolite-reaction-enzyme-gene interaction network was built to reveal the biological process of how they could disorder the endogenous lipid profile of platinum resistance in GC patients through the glycerophospholipid metabolism pathway. Finally, we further identified PLA2G4A and ACHE as core targets of the process by correlation analysis and tissue microarray immunohistochemical verification. Conclusion PLA2G4A and ACHE regulated endogenous lipid profile in the platinum resistance in GC patients through the glycerophospholipid metabolism pathway. The screening of lipid biomarkers will facilitate earlier precision medicine interventions for chemotherapy-resistant gastric cancer. The development of therapies targeting PLA2G4A and ACHE could enhance platinum chemotherapy effectiveness.

Funder

National Natural Science Foundation of China

Natural Science Research of Jiangsu Higher Education Institutions of China

Jiangsu Provincial Medical Youth Talent

“333” Project of Jiangsu Province

Jiangsu Provincial Hospital of Traditional Chinese Medicine Academic Talent Program

Postgraduate Research &Practice Innovation Program of Jiangsu Province

Foundation of Administration of Traditional Chinese Medicine of Jiangsu Province, China

A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

Jiangsu Province Chinese Medicine Science and Technology Development Program Key Projects.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3