The HIFIA/LINC02913/IGF1R axis promotes the cell function of adipose-derived mesenchymal stem cells under hypoxia via activating the PI3K/AKT pathway

Author:

Xiong Xiang,Yuan Liqin,Yang Kai,Wang Xiancheng

Abstract

Abstract Objective Promoting angiogenesis is crucial for tissue repair. Adipose-derived mesenchymal stem cells (ADSCs) are endowed with the ability of paracrine secretion of various angiogenic cytokines and the differentiation potential into endothelium-like cells to directly participate in angiogenesis. ADSCs are key seed cells for promoting angiogenesis in regenerative medicine and tissue engineering. This study aimed to explore the role and mechanism of C9orf106 (LINC02913) in the angiogenesis of ADSCs. Methods The microarray dataset GSE12884 was analyzed to identify the differentially expressed lncRNAs in ADSCs under normoxia and hypoxia. The expression of the key genes was detected using qRT-PCR, western blot assay (western blot), and immunofluorescence (IF) staining. The adipogenic ability and tube formation ability of ADSCs was detected using oil red O staining and tube formation assay, respectively. The regulatory relationship between hypoxia-inducible factor-1alpha (HIF1A) and LINC02913 was verified using chromatin immunoprecipitation (ChIP) assay and dual-luciferase reporter gene assay. A skin wound healing nude mice model was established. Hematoxylin and eosin (H&E) staining was applied to detect pathological skin damage. Immunohistochemistry (IHC) staining was used to determine the level of CD31 in skin tissues. Results LINC02913 expression was decreased in ADSCs under hypoxia; LINC02913 overexpression inhibited the proliferation, adipogenic ability, endothelial differentiation ability, and tube formation ability of ADSCs. ChIP assay and dual-luciferase reporter gene assay results showed that HIF1A could directly bind to the LINC02913 promoter region to inhibit its transcription. Through RNAact prediction and analysis of the correlation with LINC02913 expression, it was found that IGF1R may directly interact with LINCO02913. The HIF1A/LINC02913/IGF1R axis could activate the PI3K/AKT pathway to promote the biological function of ADSCs. Hypoxia-ADSCs significantly promoted vascularization in the wounded skin. The regulatory effect of LINC02913/IGF1R axis on hypoxia-ADSCs treated skin wound healing were verified. Conclusion The HIF1A/LINC02913/IGF1R axis promoted the proliferation, adipogenic ability, and tube formation ability of ADSCs under hypoxia via activating the PI3K/AKT pathway.

Funder

Natural Science Foundation of Hunan Province

Changsha Municipal Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3