Author:
Ma Li,Shi Wanting,Ma Xun,Zou Minghui,Chen Weidan,Li Wenlei,Zou Rongjun,Chen Xinxin
Abstract
Abstract
Background
To detect the development, function and therapeutic potential of epicardial adipose tissue (EAT); analyze a related gene expression dataset, including data from neonates, infants, and children with congenital heart disease (CHD); compare the data to identify the codifferentially expressed (DE) mRNAs and lncRNAs and the corresponding miRNAs; generate a potential competitive endogenous RNA (ceRNA) network; and assess the involvement of immunocyte infiltration in the development of the EAT.
Methods
Multiple algorithms for linear models for microarray data algorithms (LIMMA), CIBERSORT, gene-set enrichment analysis (GSEA), and gene set variation analysis (GSVA) were used. The miRcode, miRDB, miRTarBase, and TargetScan database were used to construct the ceRNA network. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DE mRNAs were performed.
Results
Thirteen co-DE mRNAs and 47 co-DE lncRNAs were subsequently identified. The related categories included negative regulation of myoblast differentiation, regulation of ion transmembrane transport, and heart development, which were primarily identified for further pathway enrichment analysis. Additionally, the hub ceRNA network in EAT development involving MIR210HG, hsa-miR-449c-5p, and CACNA2D4 was generated and shown to target monocyte infiltration.
Conclusion
These findings suggest that the pathways of myoblast differentiation and ion transmembrane transport may be potential hub pathways involved in EAT development in CHD patients. In addition, the network includes monocytes, MIR210HG, and CACNA2D4, which were shown to target the RIG-I-like receptor signaling pathway and PPAR signaling pathway, indicating that these factors may be novel regulators and therapeutic targets in EAT development.
Funder
National Key Clinical Specialty Discipline Construction of Guangzhou
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献