Unfolded protein response pathways in stroke patients: a comprehensive landscape assessed through machine learning algorithms and experimental verification

Author:

Yu Haiyang,Ji Xiaoyu,Ouyang Yang

Abstract

Abstract Background The unfolding protein response is a critical biological process implicated in a variety of physiological functions and disease states across eukaryotes. Despite its significance, the role and underlying mechanisms of the response in the context of ischemic stroke remain elusive. Hence, this study endeavors to shed light on the mechanisms and role of the unfolding protein response in the context of ischemic stroke. Methods In this study, mRNA expression patterns were extracted from the GSE58294 and GSE16561 datasets in the GEO database. The screening and validation of protein response-related biomarkers in stroke patients, as well as the analysis of the immune effects of the pathway, were carried out. To identify the key genes in the unfolded protein response, we constructed diagnostic models using both random forest and support vector machine-recursive feature elimination methods. The internal validation was performed using a bootstrapping approach based on a random sample of 1,000 iterations. Lastly, the target gene was validated by RT-PCR using clinical samples. We utilized two algorithms, CIBERSORT and MCPcounter, to investigate the relationship between the model genes and immune cells. Additionally, we performed uniform clustering of ischemic stroke samples based on expression of genes related to the UPR pathway and analyzed the relationship between different clusters and clinical traits. The weighted gene co-expression network analysis was conducted to identify the core genes in various clusters, followed by enrichment analysis and protein profiling for the hub genes from different clusters. Results Our differential analysis revealed 44 genes related to the UPR pathway to be statistically significant. The integration of both machine learning algorithms resulted in the identification of 7 key genes, namely ATF6, EXOSC5, EEF2, LSM4, NOLC1, BANF1, and DNAJC3. These genes served as the foundation for a diagnostic model, with an area under the curve of 0.972. Following 1000 rounds of internal validation via randomized sampling, the model was confirmed to exhibit high levels of both specificity and sensitivity. Furthermore, the expression of these genes was found to be linked with the infiltration of immune cells such as neutrophils and CD8 T cells. The cluster analysis of ischemic stroke samples revealed three distinct groups, each with differential expression of most genes related to the UPR pathway, immune cell infiltration, and inflammatory factor secretion. The weighted gene co-expression network analysis showed that all three clusters were associated with the unfolded protein response, as evidenced by gene enrichment analysis and the protein landscape of each cluster. The results showed that the expression of the target gene in blood was consistent with the previous analysis. Conclusion The study of the relationship between UPR and ischemic stroke can help to better understand the underlying mechanisms of the disease and provide new targets for therapeutic intervention. For example, targeting the UPR pathway by blocking excessive autophagy or inducing moderate UPR could potentially reduce tissue injury and promote cell survival after ischemic stroke. In addition, the results of this study suggest that the use of UPR gene expression levels as biomarkers could improve the accuracy of early diagnosis and prognosis of ischemic stroke, leading to more personalized treatment strategies. Overall, this study highlights the importance of the UPR pathway in the pathology of ischemic stroke and provides a foundation for future studies in this field.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3