Altered splicing machinery in lung carcinoids unveils NOVA1, PRPF8 and SRSF10 as novel candidates to understand tumor biology and expand biomarker discovery
-
Published:2023-12-04
Issue:1
Volume:21
Page:
-
ISSN:1479-5876
-
Container-title:Journal of Translational Medicine
-
language:en
-
Short-container-title:J Transl Med
Author:
Blázquez-Encinas Ricardo, García-Vioque Víctor, Caro-Cuenca Teresa, Moreno-Montilla María Trinidad, Mangili Federica, Alors-Pérez Emilia, Ventura Sebastian, Herrera-Martínez Aura D., Moreno-Casado Paula, Calzado Marco A., Salvatierra Ángel, Gálvez-Moreno María A., Fernandez-Cuesta Lynnette, Foll Matthieu, Luque Raúl M., Alcala Nicolas, Pedraza-Arevalo Sergio, Ibáñez-Costa AlejandroORCID, Castaño Justo P.ORCID
Abstract
Abstract
Background
Lung neuroendocrine neoplasms (LungNENs) comprise a heterogeneous group of tumors ranging from indolent lesions with good prognosis to highly aggressive cancers. Carcinoids are the rarest LungNENs, display low to intermediate malignancy and may be surgically managed, but show resistance to radiotherapy/chemotherapy in case of metastasis. Molecular profiling is providing new information to understand lung carcinoids, but its clinical value is still limited. Altered alternative splicing is emerging as a novel cancer hallmark unveiling a highly informative layer.
Methods
We primarily examined the status of the splicing machinery in lung carcinoids, by assessing the expression profile of the core spliceosome components and selected splicing factors in a cohort of 25 carcinoids using a microfluidic array. Results were validated in an external set of 51 samples. Dysregulation of splicing variants was further explored in silico in a separate set of 18 atypical carcinoids. Selected altered factors were tested by immunohistochemistry, their associations with clinical features were assessed and their putative functional roles were evaluated in vitro in two lung carcinoid-derived cell lines.
Results
The expression profile of the splicing machinery was profoundly dysregulated. Clustering and classification analyses highlighted five splicing factors: NOVA1, SRSF1, SRSF10, SRSF9 and PRPF8. Anatomopathological analysis showed protein differences in the presence of NOVA1, PRPF8 and SRSF10 in tumor versus non-tumor tissue. Expression levels of each of these factors were differentially related to distinct number and profiles of splicing events, and were associated to both common and disparate functional pathways. Accordingly, modulating the expression of NOVA1, PRPF8 and SRSF10 in vitro predictably influenced cell proliferation and colony formation, supporting their functional relevance and potential as actionable targets.
Conclusions
These results provide primary evidence for dysregulation of the splicing machinery in lung carcinoids and suggest a plausible functional role and therapeutic targetability of NOVA1, PRPF8 and SRSF10.
Funder
MINECO Ministerio de Ciencia e Innovación Instituto de Salud Carlos III Ministerio de Universidades Consejería de Salud y Consumo, Junta de Andalucía Grupo español de tumores neuroendocrinos Fundación Eugenio Rodríguez Pascual CIBERobn
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology,General Medicine
Reference64 articles.
1. Nicholson AG, Tsao MS, Beasley MB, Borczuk AC, Brambilla E, Cooper WA, et al. The 2021 WHO classification of lung tumors: impact of advances since 2015. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2022;17(3):362–87. 2. Swarts DRA, Scarpa A, Corbo V, Van Criekinge W, van Engeland M, Gatti G, et al. MEN1 gene mutation and reduced expression are associated with poor prognosis in pulmonary carcinoids. J Clin Endocrinol Metab. 2014;99(2):E374-378. 3. Simbolo M, Mafficini A, Sikora KO, Fassan M, Barbi S, Corbo V, et al. Lung neuroendocrine tumours: deep sequencing of the four World Health Organization histotypes reveals chromatin-remodelling genes as major players and a prognostic role for TERT, RB1, MEN1 and KMT2D. J Pathol. 2017;241(4):488–500. 4. Fernandez-Cuesta L, Peifer M, Lu X, Sun R, Ozretić L, Seidal D, et al. Frequent mutations in chromatin-remodeling genes in pulmonary carcinoids. Nat Commun. 2014;27(5):3518. 5. Swarts DRA, Van Neste L, Henfling MER, Eijkenboom I, Eijk PP, van Velthuysen ML, et al. An exploration of pathways involved in lung carcinoid progression using gene expression profiling. Carcinogenesis. 2013;34(12):2726–37.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|