A rapid transition from subduction to Barrovian metamorphism: geochronology of mafic–ultramafic relicts of oceanic crust in the Central Alps, Switzerland

Author:

Lemke KimORCID,Rubatto Daniela,Hermann Jörg

Abstract

AbstractRelicts of subducted oceanic lithosphere provide key information for the tectonic reconstructions of convergent margins. In the Central Alps, such relicts occur as isolated mafic–ultramafic lenses within the migmatites of the southern Adula nappe and Cima-Lunga unit. Analysis of the major-, minor-, and accessory minerals of these ophiolitic relicts, combined with zircon and rutile U–Pb ages and zircon oxygen isotopes, allows the reconstruction of different stages of their complex evolution. The mafic–ultramafic suite in Valle di Moleno consists of chlorite-harzburgites associated with metarodingites and retrogressed eclogites. Relic omphacite and kyanite in retrogressed eclogites provide evidence for subduction-related metamorphism. Increasing XPrp in the garnet mantle towards the rim documents heating during high-pressure metamorphism up to 800–850 °C. Polyphase inclusions and chemical zoning in garnet suggest fluid-assisted melting during high-pressure metamorphism dated at 31.0 ± 0.9 Ma. In Val Cama, chlorite-harzburgites, metarodingites and calcsilicate-metasediments occur. Detrital zircon ages in the metasediment suggest a Mesozoic deposition. The metarodingite-metaperidotite-metasediment association and the low δ18O signatures of zircon (δ18O 3.0–3.7‰), inherited from seafloor metasomatism of the protoliths, show that the rocks are derived from former altered oceanic crust. Amphibolite facies metamorphism related to the Central Alps Barrovian evolution in Val Cama occurred at 28.8 ± 1.5 Ma. The combined data from Moleno and Cama indicate a rapid transition (~ 2 Ma) from subduction to collisional metamorphism with corresponding exhumation rates of 3–6 cm/year. Fast exhumation tectonics may have been favored by slab break-off or slab extraction. U–Pb dating of rutile from both localities yields ages of ~ 20 Ma, suggesting that these rocks remained at amphibolite-facies conditions for about 10 Ma and underwent a second fast exhumation of 3 cm/year associated with vertical movements along the Insubric line.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

University of Lausanne

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3