Integrated stratigraphic, sedimentological and petrographical evaluation for CERN’s Future Circular Collider subsurface infrastructure (Geneva Basin, Switzerland-France)

Author:

Haas MaximilianORCID,Carraro Davide,Ventra Dario,Plötze Michael,De Haller Antoine,Moscariello Andrea

Abstract

AbstractThe European Organization for Nuclear Research (CERN) is currently undertaking a feasibility study to build the next-generation particle accelerator, named the Future Circular Collider (FCC), hosted in a 90–100 km subsurface infrastructure in the Geneva Basin, extending across western Switzerland and adjacent France. This article represents a preliminary, basin-scale stratigraphic and lithotype analysis using state-of-the-art Swiss and French stratigraphic terminology, set in context with the FCC. Existing stratigraphic information, rock cores and well reports, laboratory analyses and geophysical well-logs from 661 wells representative for the construction area have been integrated to pave the way for a multidisciplinary approach across several geoscientific and engineering domains to guide the FCC’s upcoming technical design phase. Comparisons with well-log data allowed the identification of rock formations and lithotypes, as well as to formulate a preliminary assessment of potential geological hazards. Regional stratigraphic evaluation revealed the FCC’s intersection of 13 geological formations comprising 25 different lithotypes across the Geneva Basin. A lack of data remains for the western to south-western subsurface region of the FCC construction area shown by well-density coverage modelling. The main geological hazards are represented by karstic intervals in the Grand Essert Formation’s Neuchâtel Member, Vallorbe and Vuache formations, associated to fractured limestone lithotypes, and Cenozoic formations represented by the pure to clayey sandstone-bearing Transition zone and Siderolithic Formation. Potential swelling hazard is associated to the presence of anhydrite, and claystone lithotypes of the Molasse Rouge and Grès et Marnes Gris à gypse formations, yielding up to 17.2% of smectite in the Molasse Rouge formation. Hydrocarbon indices in both gaseous and bituminous forms are encountered in the majority of investigated wells, and bear a potential environmental hazard associated with the Molasse Rouge deposits and fractured limestones of the Mesozoic Jura formations.

Funder

Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3