Paleoenvironmental changes across the Paleocene–Eocene boundary in West Central Sinai, Egypt: geochemical proxies

Author:

Ghandour Ibrahim MohamedORCID

Abstract

AbstractA geochemical analysis has been conducted on twenty-six sediment samples spanning the P–E boundary interval collected from the Esna Shale in three well-dated stratigraphic sections in west-central Sinai, Egypt to interpret paleoenvironmental changes associated with the P–E boundary events. The Esna Shale consists of hemipelagic marine shales and marls and it is subdivided stratigraphically into the uppermost Paleocene Hanadi Member unconformably overlain by the lowermost Eocene Dababiya Quarry Bed (DQB) and El-Mahmiya members. A variety of geochemical proxies including the Al-normalized elemental concentrations and redox-related elemental ratios and parameter (V/Cr, V/V + Ni and Mn*) and productivity indicators (Porg and Babio) were employed for paleoceanographic interpretations. Across the P–E transition, the concentrations of SiO2, TiO2, Al2O3 Fe2O3, MgO, V, Cr, Ni, Cu, Rb, and Zr notably increased, whereas the concentrations of CaO, MnO, Sr, and Zn abruptly decreased. The variation in the elemental concentrations is attributed to the carbonate dissolution because of increased ocean acidification as well as a brief increase in the detrital influx associated with the brief humid interval at the base of the Eocene. The Al-normalized detrital-related elements (Ti, Zr, and Rb) values show a relatively homogeneous profile suggesting a uniform detrital input from an unchanged source rock. The simultaneous significant increase in the V/Cr and V/V + Ni ratios and enrichment of Ni, Cu, and Zn in the sediments of the DQB suggest that the depositional basin experienced dysoxic to slightly anoxic bottom conditions. The coeval increase in the Porg and Babio in the sediments of the DQB suggests an increase in nutrients availability and consequently primary productivity possibly due to enhanced upwelling during early Eocene.

Publisher

Springer Science and Business Media LLC

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3