The evolution of the Sesia Zone (Western Alps) from Carboniferous to Cretaceous: insights from zircon and allanite geochronology

Author:

Vho AliceORCID,Rubatto DanielaORCID,Lanari PierreORCID,Regis DanieleORCID

Abstract

AbstractMicroscale dating of distinct domains in minerals that contain relics of multiple metamorphic events is a key tool to characterize the polyphase evolution of complex metamorphic terranes. Zircon and allanite from five metasediments and five metaintrusive high-pressure (HP) rocks from the Eclogite Micaschist Complex of the Sesia Zone were dated by SIMS and LA-ICP-MS. In the metasediments, zircon systematically preserves detrital cores and one or two metamorphic overgrowths. An early Permian age is obtained for the first zircon rim in metasediments from the localities of Malone Valley, Chiusella Valley and Monte Mucrone (292 ± 11, 278.8 ± 3.6 and 285.9 ± 2.9 Ma, respectively). In the Malone Valley and Monte Mucrone samples, the early Permian ages are attributed to high-temperature metamorphism and coincide with the crystallization ages of associated mafic and felsic intrusions. This implies that magmatism and metamorphism were coeval and associated to the same tectono-metamorphic extensional event. In the Malone Valley, allanite from a metasediment is dated at 241.1 ± 6.1 Ma and this age is tentatively attributed to a metasomatic/metamorphic event during Permo-Triassic extension. Outer zircon rims with a late Cretaceous age (67.4 ± 1.9 Ma) are found only in the micaschist from Monte Mucrone. In metagabbro of the Ivozio Complex, zircon cores yield an intrusive age for the protolith of 340.7 ± 6.8 Ma, whereas Alpine allanite are dated at 62.9 ± 4.2 and 55.3 ± 7.3 Ma. The Cretaceous ages constrain the timing of the HP metamorphic stage. The presence of zircon overgrowth only in the central area of the Eclogite Micaschist Complex is attributed to local factors such as (1) multiple fluid pulses at HP that locally enhanced zircon dissolution and recrystallization, and (2) slightly higher temperatures reached in this area during HP metamorphism.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Springer Science and Business Media LLC

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3