Predicting mortality in The Irish Longitudinal Study on Ageing (TILDA): development of a four-year index and comparison with international measures

Author:

Matthews Soraya,Ward Mark,Nolan Anne,Normand Charles,Kenny Rose Anne,May Peter

Abstract

Abstract Objectives We aimed to replicate existing international (US and UK) mortality indices using Irish data. We developed and validated a four-year mortality index for adults aged 50 + in Ireland and compared performance with these international indices. We then extended this model by including additional predictors (self-report and healthcare utilization) and compared its performance to our replication model. Methods Eight thousand one hundred seventy-four participants in The Irish Longitudinal Study on Ageing were split for development (n = 4,121) and validation (n = 4,053). Six baseline predictor categories were examined (67 variables total): demographics; cardiovascular-related illness; non-cardiovascular illness; health and lifestyle variables; functional variables; self-report (wellbeing and social connectedness) and healthcare utilization. We identified variables independently associated with four-year mortality in the development cohort and attached these variables a weight according to strength of association. We summed the weights to calculate a single index score for each participant and evaluated predicted accuracy in the validation cohort. Results Our final 14-predictor (extended) model assigned risk points for: male (1pt); age (65–69: 2pts; 70–74: 4 pts; 75–79: 4pts; 80–84: 6pts; 85 + : 7pts); heart attack (1pt); cancer (3pts); smoked past age 30 (2pts); difficulty walking 100 m (2pts); difficulty using the toilet (3pts); difficulty lifting 10lbs (1pts); poor self-reported health (1pt); and hospital admission in previous year (1pt). Index discrimination was strong (ROC area = 0.78). Discussion Our index is predictive of four-year mortality in community-dwelling older Irish adults. Comparisons with the international indices show that our 12-predictor (replication) model performed well and suggests that generalisability is high. Our 14-predictor (extended) model showed modest improvements compared to the 12-predictor model.

Funder

Health Research Board

Publisher

Springer Science and Business Media LLC

Subject

Geriatrics and Gerontology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3