Lower extremity joint compensatory effects during the first recovery step following slipping and stumbling perturbations in young and older subjects

Author:

Ren Xiping,Lutter Christoph,Kebbach Maeruan,Bruhn Sven,Bader Rainer,Tischer Thomas

Abstract

Abstract Background The lower extremity may play a crucial role in compensating for gait perturbations. The study aimed to explore the mechanism of perturbation compensation by investigating the gait characteristics and lower extremity joint moment effects in young (YS) and older subjects (OS) during the first recovery gait following slipping (slipping_Rec1) and stumbling (stumbling_Rec1). Method An automatic perturbation-triggered program was developed using D-Flow software based on the Gait Real-time Analysis Interactive Lab to induce the two aforementioned perturbations. Marker trajectories and ground reaction forces were recorded from 15 healthy YS (age: 26.53 ± 3.04 years; body height: 1.73 ± 0.07 m; body mass: 66.81 ± 11.44 kg) and 15 healthy OS (age: 68.33 ± 3.29 years; body height: 1.76 ± 0.10 m; body mass: 81.13 ± 13.99 kg). The Human Body Model was used to compute the variables of interest. One-way analysis of variance and independent samples t-test statistical analyses were performed. Results In slipping_Rec1 and stumbling_Rec1, the change in gait pattern was mainly reflected in a significant increase in step width, no alterations in step length and stance/swing ratio were revealed. Based on perturbed task specificity, lower extremity joint moments increased or decreased at specific phases of the gait cycle in both YS and OS in slipping_Rec1 and stumbling_Rec1 compared to normal gait. The two perturbed gaits reflected the respective compensatory requirements for the lower extremity joints, with both sagittal and frontal joint moments producing compensatory effects. The aging effect was not reflected in the gait pattern, but rather in the hip extension moment during the initial stance of slipping_Rec1. Conclusions Slipping appears to be more demanding for gait recovery than stumbling. Gait perturbation compensatory mechanisms for OS should concentrate on ankle strategy in the frontal plane and counter-rotation strategy around the hip.

Funder

Deutsche Forschungsgemeinschaft

Universität Rostock

Publisher

Springer Science and Business Media LLC

Subject

Geriatrics and Gerontology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3