Abstract
Abstract
Background
The European Working Group on Sarcopenia in Older People (EWGSOP2) recommends grip strength and chair stand tests to be used as primary defining measures. It is unclear how either test affects prevalence estimates.
Methods
This cross-sectional study involved 3498 community-dwelling participants (40–84 years) from the 7th Tromsø Study survey (2015–2016). We used grip strength, five-repetition chair stands, four-meter Walk Speed Test, Timed-Up-and-Go (TUG) and Dual-Energy X-ray Absorptiometry measurements. Data were analyzed using multiple linear regression models and ROC-curves.
Results
Probable and confirmed sarcopenia prevalence was 1.3 and 4.4% based on grip strength and chair stands, respectively. There was very low agreement between grip strength and chair stand cut-offs (κ = 0.07), with only 4.3% of participants defined as having probable sarcopenia overlapping in the two criteria. Participants with grip strength-based sarcopenia had lower mean height, weight, waist circumference, and appendicular lean mass relative to body height (ALMheight2) than non-sarcopenic participants (all p < 0.001), after adjusting for multiple covariates. Conversely, participants with chair stand-based sarcopenia had similar height, higher weight, waist circumference and body fat% compared to non-sarcopenic participants (all p < 0.05). Area-under-curves (AUCs) for TUG-time were significantly larger when using chair stand instead of grip strength cut-offs (0.86, 95% CI 0.84–0.89 vs. 0.75, 95% CI 0.69–0.83).
Conclusions
Using chair stands instead of grip strength more than doubled probable sarcopenia prevalence across all ages. The two measures defined individuals of contradictory anthropometrics, body composition, and dissimilar physical function to have probable sarcopenia. Researchers should further evaluate the consequences of using different strength measures in the EWGSOP2 definition to classify sarcopenia.
Funder
High North Population Studies, UiT The Arctic University of Norway.
Publisher
Springer Science and Business Media LLC
Subject
Geriatrics and Gerontology
Reference33 articles.
1. Vellas B, Fielding RA, Bens C, Bernabei R, Cawthon PM, Cederholm T, et al. Implications of ICD-10 for sarcopenia clinical practice and clinical trials: report by the international conference on frailty and sarcopenia research task force. J Frailty Aging. 2018;7(1):2–9.
2. De Buyser SL, Petrovic M, Taes YE, Toye KRC, Kaufman JM, Lapauw B, et al. Validation of the FNIH sarcopenia criteria and SOF frailty index as predictors of long-term mortality in ambulatory older men. Age Ageing. 2016;45(5):603–9.
3. Yeung SSY, Reijnierse EM, Pham VK, Trappenburg MC, Lim WK, Meskers CGM, et al. Sarcopenia and its association with falls and fractures in older adults: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2019;10(3):485.
4. Chang KV, Hsu TH, Wu WT, Huang KC, Han DS. Association between sarcopenia and cognitive impairment: a systematic review and meta-analysis. J Am Med Dir Assoc. 2016;17(12):1164–e1167.
5. Beaudart C, Biver E, Reginster JY, Rizzoli R, Rolland Y, Bautmans I, et al. Validation of the SarQoL(R), a specific health-related quality of life questionnaire for sarcopenia. J Cachexia Sarcopenia Muscle. 2017;8(2):238–44.
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献