Author:
Huang Li-Yuan,Lim Ai Yin,Hsu Chih-Chin,Tsai Yun-Fang,Fu Tieh-Cheng,Shyu Yu-Chiao,Peng Sheng-Chiao,Wang Jong-Shyan
Abstract
Abstract
Background
Circulating miRNAs (c-miR) have been shown to be potential biomarkers in sarcopenia, but the miRNAs response to aerobic exercise in older people remains inconclusive. We sought to examine the exercise benefits on physical fitness and miRNAs, and to explore the mediating effect of miRNAs on training-induced fitness changes.
Methods
This controlled trial recruited 58 community-dwelling older adults and randomized them into exercise group (EX) and control group (CON). EX received 8-week supervised moderate intensity cycling training 3x/week. C-miR expression (c-miR-21, c-miR-126, c-miR-146a, c-miR-222), physical fitness (body composition, cardiorespiratory fitness, muscular fitness) and physical activity level (PAL, measured as in daily step counts) were evaluated at baseline, post-training, and post-16-week follow-up. The mediating effect of miRNA expression onto exercise-induced physical fitness change was determined by causal mediation analysis (CMA).
Results
Exercise significantly improved body fat and cardiorespiratory fitness in older people while maintaining muscle mass and strength, and augmented expression of c-miR-126, c-miR-146a, and c-miR-222 for up to 16 weeks post-training. Notably, older people in EX had substantially higher daily step counts than CON throughout the study even after the active training period. However, CMA revealed no significant indirect effect but a potential mediating effect of c-miR-21, but not the rest, onto the body composition, cardiorespiratory fitness, and lower limb strength.
Conclusion
An eight-week supervised MICT program promoted a higher level of physical activity up to 16 weeks post-training, which induces better cardiorespiratory fitness and resists decline in muscular measures. C-miRNA, especially c-miR-21, potentially mediates the training effect upon fitness.
Publisher
Springer Science and Business Media LLC