Abstract
Abstract
Background
Although previous studies have evaluated risk factors for the incidence of severe infection in patients with antineutrophil cytoplasmic antibody-associated vasculitis (AAV), the relationship between body mass index (BMI) and severe infection in AAV has not been elucidated. We hypothesized that older adults with AAV and a low BMI would be at a higher risk of infection. We therefore investigated the association between underweight status at AAV diagnosis and subsequent occurrence of severe infection in older adults with AAV.
Methods
This single-center retrospective cohort study included 93 consecutive older adults with microscopic polyangiitis (MPA) treated at the Aichi Medical University Hospital in Japan between 2004 and 2018. The relationships between BMI at diagnosis and subsequent first severe infection were assessed using multivariate Cox proportional hazards models. The cumulative probability of the development of the first severe infection was calculated using the Kaplan-Meier method and the log-rank test. The level of statistical significance was set at P < 0.05.
Results
During the median follow-up period of 19 (6–53) months, 29 (31.2%) patients developed at least one severe infection. Older age (adjusted hazard ratio [HR] = 2.02, 95% confidence interval [CI]: 1.14–3.52, per 10 years; P = 0.016), low BMI (< 18.5 kg/m2 compared with normal BMI [18.5–23.0 kg/m2], adjusted HR = 2.63, 95% CI: 1.11–6.19; P = 0.027), and use of methylprednisolone pulse therapy (adjusted HR = 2.48, 95% CI: 1.07–5.76; P = 0.034) were found to be significant predictors of severe infection.
Conclusions
Low BMI was associated with a higher risk of severe infection in older adults with MPA, suggesting that careful management may be required to prevent this complication in this vulnerable group. Further studies are needed to elucidate the optimal treatment strategy for these patients.
Publisher
Springer Science and Business Media LLC
Subject
Geriatrics and Gerontology
Reference43 articles.
1. Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, et al. 2012 revised international Chapel Hill consensus conference nomenclature of Vasculitides. Arthritis Rheum. 2013;65:1–11. https://doi.org/10.1002/art.37715.
2. Jennette JC, Falk RJ. Pathogenesis of antineutrophil cytoplasmic autoantibody-mediated disease. Nat Rev Rheumatol. 2014;10:463–73. https://doi.org/10.1038/nrrheum.2014.103.
3. Hogan J, Avasare R, Radhakrishnan J. Is newer safer? Adverse events associated with first-line therapies for ANCA-associated vasculitis and lupus nephritis. Clin J Am Soc Nephrol. 2014;9:1657–67. https://doi.org/10.2215/CJN.01600214.
4. Robson J, Doll H, Suppiah R, Flossmann O, Harper L, Höglund P, et al. Damage in the anca-associated vasculitides: long-term data from the European vasculitis study group (EUVAS) therapeutic trials. Ann Rheum Dis. 2015;74:177–84. https://doi.org/10.1136/annrheumdis-2013-203927.
5. Mun CH, Yoo J, Jung SM, Song JJ, Park YB, Lee SW. The initial predictors of death in 153 patients with ANCA-associated vasculitis in a single Korean Centre. Clin Exp Rheumatol. 2018;36(Suppl 111):65–72.