The causal relationship of human blood metabolites with the components of Sarcopenia: a two-sample Mendelian randomization analysis

Author:

Peng Wenxi,Xia Zhilin,Guo Yaxuan,Li Linghong,He Jianrong,Su Yi

Abstract

Abstract Background Sarcopenia is a progressive loss of muscle mass and function. Since skeletal muscle plays a critical role in metabolic homeostasis, identifying the relationship of blood metabolites with sarcopenia components would help understand the etiology of sarcopenia. Methods A two-sample Mendelian randomization study was conducted to examine the causal relationship of blood metabolites with the components of sarcopenia. Summary genetic association data for 309 known metabolites were obtained from the Twins UK cohort and KORA F4 study (7824 participants). The summary statistics for sarcopenia components [hand grip strength (HGS), walking pace (WP), and appendicular lean mass (ALM)] were obtained from the IEU Open GWAS project (461,089 participants). The inverse variance weighted method was used, and the MR-Egger, weighted median, and MR-PRESSO were used for the sensitivity analyses. Metabolic pathways analysis was further performed. Results Fifty-four metabolites associated with sarcopenia components were selected from 275 known metabolites pool. Metabolites that are causally linked to the sarcopenia components were mainly enriched in amino sugar and nucleotide sugar metabolism, galactose metabolism, fructose and mannose metabolism, carnitine synthesis, and biotin metabolism. The associations of pentadecanoate (15:0) with ALM, and 3-dehydrocarnitine and isovalerylcarnitine with HGS were significant after Bonferroni correction with a threshold of P < 1.82 × 10− 4 (0.05/275). Meanwhile, the association of hyodeoxycholate and glycine with the right HGS, and androsterone sulfate with ALM were significant in the sensitivity analyses. Conclusion Blood metabolites from different metabolism pathways were causally related to the components of sarcopenia. These findings might benefit the understanding of the biological mechanisms of sarcopenia and targeted drugs development for muscle health.

Funder

Hunan province college students research learning and innovative experiment project

National Natural Science Foundation of China

Science-Technology Foundation for Young Scientists of Hunan Province of China

Research Foundation of Education Bureau of Hunan Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3