Predictors of fall risk in older adults using the G-STRIDE inertial sensor: an observational multicenter case–control study

Author:

Álvarez Marta Neira,Rodríguez-Sánchez Cristina,Huertas-Hoyas Elisabet,García-Villamil-Neira Guillermo,Espinoza-Cerda Maria Teresa,Pérez-Delgado Laura,Reina-Robles Elena,Martin Irene Bartolomé,del-Ama Antonio J.,Ruiz-Ruiz Luisa,Jiménez-Ruiz Antonio R.

Abstract

Abstract Background There are a lot of tools to use for fall assessment, but there is not yet one that predicts the risk of falls in the elderly. This study aims to evaluate the use of the G-STRIDE prototype in the analysis of fall risk, defining the cut-off points to predict the risk of falling and developing a predictive model that allows discriminating between subjects with and without fall risks and those at risk of future falls. Methods An observational, multicenter case–control study was conducted with older people coming from two different public hospitals and three different nursing homes. We gathered clinical variables ( Short Physical Performance Battery (SPPB), Standardized Frailty Criteria, Speed 4 m walk, Falls Efficacy Scale-International (FES-I), Time-Up Go Test, and Global Deterioration Scale (GDS)) and measured gait kinematics using an inertial measure unit (IMU). We performed a logistic regression model using a training set of observations (70% of the participants) to predict the probability of falls. Results A total of 163 participants were included, 86 people with gait and balance disorders or falls and 77 without falls; 67,8% were females, with a mean age of 82,63 ± 6,01 years. G-STRIDE made it possible to measure gait parameters under normal living conditions. There are 46 cut-off values of conventional clinical parameters and those estimated with the G-STRIDE solution. A logistic regression mixed model, with four conventional and 2 kinematic variables allows us to identify people at risk of falls showing good predictive value with AUC of 77,6% (sensitivity 0,773 y specificity 0,780). In addition, we could predict the fallers in the test group (30% observations not in the model) with similar performance to conventional methods. Conclusions The G-STRIDE IMU device allows to predict the risk of falls using a mixed model with an accuracy of 0,776 with similar performance to conventional model. This approach allows better precision, low cost and less infrastructures for an early intervention and prevention of future falls.

Funder

FUNDACION MAPFRE “Ayudas a la investigación de Ignacio H. de Larramendi, año 2020”

Spanish Ministry of Science

European Union

Publisher

Springer Science and Business Media LLC

Subject

Geriatrics and Gerontology

Reference36 articles.

1. Organization, Geneva. World. Health and IGO. Step safely: strategies for preventing and managing falls across the life-course. 2021. Licence: CC BY-NC-SA 3.0. http://apps.who.int/iris .

2. Bergen G, Stevens MR, Burns ER. Falls and Fall Injuries Among Adults Aged ≥65 Years -the United States, 2014. MMWR Morb Mortal Wkly Rep. 2016;65(37):993–8. https://doi.org/10.15585/mmwr.mm6537a2.

3. Rubenstein LZ. Falls in older people: epidemiology, risk factors and strategies for prevention. Age Ageing. 2006;35(Suppl 2):ii37–41. https://doi.org/10.1093/ageing/afl084.

4. Neira Álvarez M, Esteve Arríen A, Caballero Mora MÁ, Pérez Pena B, Esbri Victor M, Cedeño Veloz B, et al. An opportunity to identify and prevent frailty through falls intervention. Rev Esp Public Health. 2021;95:e202110174.

5. Haines TP, Hill K, Walsh W, Osborne R. Design-related bias in hospital fall risk screening tool predictive accuracy evaluations: Systematic review and meta-analysis. J Gerontol. 2007;62:664–72.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3