Author:
Álvarez Marta Neira,Rodríguez-Sánchez Cristina,Huertas-Hoyas Elisabet,García-Villamil-Neira Guillermo,Espinoza-Cerda Maria Teresa,Pérez-Delgado Laura,Reina-Robles Elena,Martin Irene Bartolomé,del-Ama Antonio J.,Ruiz-Ruiz Luisa,Jiménez-Ruiz Antonio R.
Abstract
Abstract
Background
There are a lot of tools to use for fall assessment, but there is not yet one that predicts the risk of falls in the elderly. This study aims to evaluate the use of the G-STRIDE prototype in the analysis of fall risk, defining the cut-off points to predict the risk of falling and developing a predictive model that allows discriminating between subjects with and without fall risks and those at risk of future falls.
Methods
An observational, multicenter case–control study was conducted with older people coming from two different public hospitals and three different nursing homes. We gathered clinical variables ( Short Physical Performance Battery (SPPB), Standardized Frailty Criteria, Speed 4 m walk, Falls Efficacy Scale-International (FES-I), Time-Up Go Test, and Global Deterioration Scale (GDS)) and measured gait kinematics using an inertial measure unit (IMU). We performed a logistic regression model using a training set of observations (70% of the participants) to predict the probability of falls.
Results
A total of 163 participants were included, 86 people with gait and balance disorders or falls and 77 without falls; 67,8% were females, with a mean age of 82,63 ± 6,01 years. G-STRIDE made it possible to measure gait parameters under normal living conditions. There are 46 cut-off values of conventional clinical parameters and those estimated with the G-STRIDE solution. A logistic regression mixed model, with four conventional and 2 kinematic variables allows us to identify people at risk of falls showing good predictive value with AUC of 77,6% (sensitivity 0,773 y specificity 0,780). In addition, we could predict the fallers in the test group (30% observations not in the model) with similar performance to conventional methods.
Conclusions
The G-STRIDE IMU device allows to predict the risk of falls using a mixed model with an accuracy of 0,776 with similar performance to conventional model. This approach allows better precision, low cost and less infrastructures for an early intervention and prevention of future falls.
Funder
FUNDACION MAPFRE “Ayudas a la investigación de Ignacio H. de Larramendi, año 2020”
Spanish Ministry of Science
European Union
Publisher
Springer Science and Business Media LLC
Subject
Geriatrics and Gerontology
Reference36 articles.
1. Organization, Geneva. World. Health and IGO. Step safely: strategies for preventing and managing falls across the life-course. 2021. Licence: CC BY-NC-SA 3.0. http://apps.who.int/iris .
2. Bergen G, Stevens MR, Burns ER. Falls and Fall Injuries Among Adults Aged ≥65 Years -the United States, 2014. MMWR Morb Mortal Wkly Rep. 2016;65(37):993–8. https://doi.org/10.15585/mmwr.mm6537a2.
3. Rubenstein LZ. Falls in older people: epidemiology, risk factors and strategies for prevention. Age Ageing. 2006;35(Suppl 2):ii37–41. https://doi.org/10.1093/ageing/afl084.
4. Neira Álvarez M, Esteve Arríen A, Caballero Mora MÁ, Pérez Pena B, Esbri Victor M, Cedeño Veloz B, et al. An opportunity to identify and prevent frailty through falls intervention. Rev Esp Public Health. 2021;95:e202110174.
5. Haines TP, Hill K, Walsh W, Osborne R. Design-related bias in hospital fall risk screening tool predictive accuracy evaluations: Systematic review and meta-analysis. J Gerontol. 2007;62:664–72.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献