Interpretable classifiers for prediction of disability trajectories using a nationwide longitudinal database

Author:

Wu Yafei,Xiang Chaoyi,Jia Maoni,Fang Ya

Abstract

Abstract Objectives To explore the heterogeneous disability trajectories and construct explainable machine learning models for effective prediction of long-term disability trajectories and understanding the mechanisms of predictions among the elderly Chinese at community level. Methods This study retrospectively collected data from the Chinese Longitudinal Healthy Longevity and Happy Family Study between 2002 and 2018. A total of 4149 subjects aged 65 + in 2002 with completed activities of daily living (ADL) information for at least three waves were included. The mixed growth model was used to identify disability trajectories, and five machine learning models were further established to predict disability trajectories using epidemiological variables. An explainable approach was deployed to understand the model’s decisions. Results Three distinct disability trajectories, including normal class (77.3%), progressive class (15.5%), and high-onset class (7.2%), were identified for three-class prediction. The latter two were further merged into abnormal class, accompanied by normal class for two-class prediction. Machine learning, especially random forest and extreme gradient boosting achieved good performance in both two tasks. ADL, age, leisure activity, cognitive function, and blood pressure were key predictors. Conclusion The findings suggest that machine learning showed good performance and maybe of additional value in analyzing quality indicators in predicting disability trajectories, thereby providing basis to personalize intervention measures.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Geriatrics and Gerontology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3