On the accuracy of macroscopic equations for linearized rarefied gas flows

Author:

Wu Lei,Gu Xiao-Jun

Abstract

AbstractMany macroscopic equations are proposed to describe the rarefied gas dynamics beyond the Navier-Stokes level, either from the mesoscopic Boltzmann equation or some physical arguments, including (i) Burnett, Woods, super-Burnett, augmented Burnett equations derived from the Chapman-Enskog expansion of the Boltzmann equation, (ii) Grad 13, regularized 13/26 moment equations, rational extended thermodynamics equations, and generalized hydrodynamic equations, where the velocity distribution function is expressed in terms of low-order moments and Hermite polynomials, and (iii) bi-velocity equations and “thermo-mechanically consistent" Burnett equations based on the argument of “volume diffusion”. This paper is dedicated to assess the accuracy of these macroscopic equations. We first consider the Rayleigh-Brillouin scattering, where light is scattered by the density fluctuation in gas. In this specific problem macroscopic equations can be linearized and solutions can always be obtained, no matter whether they are stable or not. Moreover, the accuracy assessment is not contaminated by the gas-wall boundary condition in this periodic problem. Rayleigh-Brillouin spectra of the scattered light are calculated by solving the linearized macroscopic equations and compared to those from the linearized Boltzmann equation. We find that (i) the accuracy of Chapman-Enskog expansion does not always increase with the order of expansion, (ii) for the moment method, the more moments are included, the more accurate the results are, and (iii) macroscopic equations based on “volume diffusion" do not work well even when the Knudsen number is very small. Therefore, among about a dozen tested equations, the regularized 26 moment equations are the most accurate. However, for moderate and highly rarefied gas flows, huge number of moments should be included, as the convergence to true solutions is rather slow. The same conclusion is drawn from the problem of sound propagation between the transducer and receiver. This slow convergence of moment equations is due to the incapability of Hermite polynomials in the capturing of large discontinuities and rapid variations of the velocity distribution function. This study sheds some light on how to choose/develop macroscopic equations for rarefied gas dynamics.

Publisher

Springer Science and Business Media LLC

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3