Effects of non-stationary wind velocity models on buffeting performance of closed-box girder suspension bridges

Author:

Zhou Rui,Lin Yinan,Lu Peng,Yang Yongxin,Zhu Jinbo

Abstract

Abstract Non-stationary characteristic in nature wind has a great effect on buffeting performance of long-span bridges. The influence of key parameters in non-stationary wind velocity models on nonlinear buffeting responses of a super long-span suspension bridge was investigated in this paper. Firstly, four non-stationary wind velocity models are established by combing the time-varying average wind velocity with an exponential function and the fluctuating wind velocity with four modulation functions, respectively. These non-stationary wind velocity models have obvious non-stationary characteristics and then are validated by the classical power spectrum densities. Finally, three displacement responses of the bridge deck under four different independent variables of β in the exponential function and four modulation functions were compared, respectively. Results show that the turbulence intensities using two non-uniform modulation functions (NMF) are larger than those using uniform modulation functions (uMF). Moreover, the root mean square (RMS) values of three displacement responses increase with the decrease of β. Besides, the RMS values of three displacement under two NMFs are larger than those under two uMFs, and their RMS values under the second uMF are the smallest.

Funder

National Natural Science Foundation of China

Guangdong Province Natural Science Foundation

henzhen Science and Technology Innovation Program

Key Laboratory for Resilient Infrastructures of Coastal Cities (Shenzhen University), Ministry of Education

the Foundation of State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Aerospace Engineering,Modeling and Simulation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3