Abstract
AbstractThis paper presents an extensive review of existing techniques used in estimating design wind pressures considering Reynolds number and turbulence effects, as well as a case study of a reference building investigated experimentally. We shed light on the limitations of current aerodynamic testing techniques, provisions in design standards, and computational fluid dynamics (CFD) methods to predict wind-induced pressures. The paper highlights the reasons for obstructing the standardization of the wind tunnel method. Moreover, we introduce improved experimental and CFD techniques to tackle the identified challenges. CFD provides superior and efficient performance by employing wall-modeled large-eddy simulation (WMLES) and hybrid RANS-LES models. In addition, we tested a large-scale building model and compared the results with published small-scale data. The findings reinforce our hypothesis concerning the scaling issues and Reynolds number effects in aerodynamic testing.
Funder
Louisiana Board of Regents
LSU
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Aerospace Engineering,Modeling and Simulation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献