Mass transfer analyses of reactive boundary schemes for lattice Boltzmann method with staircase approximation

Author:

Tong Zi-Xiang,Li Ming-Jia,Du Yanxia,Yuan Xianxu

Abstract

AbstractLattice Boltzmann (LB) methods with reactive boundary conditions are widely used in pore-scale simulations of dissolution and ablation processes. The staircase approximation of curved boundary is often employed because of its simplicity in handling solid structure changes. In this work, the mass transfer of two typical LB reactive boundary schemes are analyzed for the staircase boundary. The Type I boundary scheme is based on relations of local distribution functions and a wet-node boundary mesh. The Type II boundary scheme adopts the half-way bounce-back scheme. Boundary concentrations are determined by finite difference, and a link-wise boundary mesh is used. The analyses demonstrate that for straight boundaries, both the boundary schemes have accurate mass transfer rates, which means the mass transfer calculated by exchanges of distribution functions is the same as that calculated by reaction rates. For curved boundaries with staircase approximation, including interfacial normal directions in the Type I boundary scheme can provide accurate mass transfer for inclined straight boundaries. However, if the staircase boundary geometry is used directly without normal directions, the reaction rate will be overestimated. One-dimensional and two-dimensional reaction-diffusion processes with dissolution are simulated to validate the analyses. Both the boundary schemes work well for one-dimensional simulations. For two-dimensional simulations, the Type II boundary scheme significantly overestimates the reaction rate, and stronger artificial anisotropic effects are observed. The Type I boundary scheme with normal directions has better performance, but error still exists.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3