Numerical study on the combustion process in a gas turbine combustor with different reference velocities

Author:

Gong Cheng,Zhao Shufan,Chen Weiqiang,Li Wenyu,Zhou Yu,Qiu Ming

Abstract

AbstractThe mixing and combustion processes under different reference velocities in a gas turbine combustor were numerically investigated using the Flamelet Generated Manifold (FGM) model based on the Reynolds Averaged Navier–Stokes (RANS) method. The flow and combustion fields show strong self-similarity except on the slow auto-ignition in the mixing layer between fuel-rich product and fresh air upstream of the flame stabilization position. The time-scale analysis was carried out to understand the combustion modes inside the combustor. In general, the residence time of the fuel-mixture is much longer than both the chemical time scale and the mixing time scale. Thus, the combustion properties in each sub-zone were dominated by the mean flow structures. Furthermore, the combustion process exhibits a mixing-controlled feature in total. However, partially premixed combustion still appears on the flame base. Most of the fuel was found to be oxidized in the primary zone and the intermediate zone; however, the slow oxidization reactions also play a non-negligible role on the whole combustion process. Finally, a sketch map on the space of mixture fraction and combustion efficiency was proposed to understand the mixing and oxidization experiences of the fuel mixture.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Aerospace Engineering,Modeling and Simulation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AI-driven DfAM of aeronautical hydrogen gas turbine combustors;International Journal of Hydrogen Energy;2024-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3