Experimental investigation of the aerodynamics of a large industrial building with parapet

Author:

Aly Aly MousaadORCID,Thomas Matthew,Gol-Zaroudi Hamzeh

Abstract

AbstractThe aerodynamic performance of a roof depends significantly on its shape and size, among other factors. For instance, large roofs of industrial low-rise buildings may behave differently compared to those of residential homes. The main objective of this study is to experimentally investigate how perimeter solid parapets can alter the flow pattern around a low-rise building with a large aspect ratio of width/height of about 7.6, the case of industrial buildings/shopping centers. Solid parapets of varied sizes are added to the roof and tested in an open-jet simulator in a comparative study to understand their impact on roof pressure coefficients. Roof pressures were measured in the laboratory for cases with and without parapets under different wind direction angles (representative of straight-line winds under open terrain conditions). The results show that using a parapet can alter wind pressures on large roofs. Parapets can modify the flow pattern around buildings and change the mean and peak pressures. The mean pressure pattern shows a reduction in the length of the separation bubble due to the parapet. The parapet of 14% of the building’s roof height is the most efficient at reducing mean and peak pressures compared to other parapet heights.

Funder

Louisiana Board of Regents

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3