Author:
Huang Ranran,Cheng Jiangyi,Chen Jianqiang,Yuan Xianxu,Wu Jie
Abstract
AbstractIn this work, we studied the bluntness effect on the hypersonic boundary-layer transition over a slender cone at Mach 6 with interchangeable tips in a noisy Ludwieg tube tunnel before the so-called “transition reversal” phenomenon occurs. The evolution of instability waves is characterized using surface flush-mounted pressure sensors deployed along the streamwise direction within unit Reynolds number from 4E+ 6/m ≤ Reunit ≤ 10E+ 6/m, and the bluntness of the cone nose ranges from 0.1 mm to 5 mm. Power spectral density (PSD) of pressure fluctuation indicates that small nose bluntness (ReR ≤ 2000) has little influence on the evolution of instability waves along the hypersonic boundary-layer, whereas with a moderate nose size (2000 ≤ ReR ≤ 5000), the hypersonic boundary layer transition is delayed monotonically as the nose radius increases before the boundary-layer turns into fully laminar without instability waves. The delaying effect can be attributed to the increased entropy-layer swallowing distance with a large tip radius. Instability wave characterization reveals that the second mode instability wave plays a dominant role before the transition reversal happens. The quadratic phase locking of second mode instabilities can be identified by bispectral analysis, and it attenuates as the nose tip radius increases.
Funder
Innovative Research Group Project of the National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Aerospace Engineering,Modeling and Simulation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献