Abstract
AbstractIn this paper, we present an effective prismatic mesh generation method for viscous flow simulations. To address the prismatic mesh collisions in recessed cavities or slit areas, we exploit 3D tensors controlled anisotropic volume harmonic field to generate prismatic meshes. Specially, a well-fitting tetrahedral mesh is first constructed to serve as the discrete computation domain of volume harmonic fields. Then, 3D tensors are exploited to control the volume harmonic field that better fits the shape geometry. From the topological perspective, the generation of the prismatic mesh can be treated as a topology-preserved morphing of the viscous wall. Therefore, iso-surfaces in the volume harmonic field should be homeomorphic to the viscous wall while fitting its shapes. Finally, a full prismatic mesh can be induced by estimating the forward directions and visible regions in the volume harmonic field. Moreover, to be compatible with different simulation situations, the thickness of prismatic meshes should be variable. Our approach provides local adjustable thickness of prismatic meshes, which can be achieved by controlling local 3D tensors. The proposed anisotropic volume harmonic field based prismatic meshes are efficient and robust, and a full prismatic mesh can be guaranteed without low quality collisions. Various experiments have shown that our proposed prismatic meshes have obvious advantages in terms of efficiency and effectiveness.
Funder
National Numerical Wind Tunnel Project
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献