Abstract
AbstractShock wave/boundary layer interaction (SWBLI) continues to pose a significant challenge in the field of aerospace engineering. This paper aims to address this issue by proposing a novel approach for predicting aerodynamic coefficients and heat transfer in viscous supersonic and hypersonic flows using a high-order flux reconstruction technique. Currently, finite volume methods are extensively employed for the computation of skin aerodynamic coefficients and heat transfer. Nevertheless, these numerical methods exhibit considerable susceptibility to a range of factors, including the inviscid flux function and the computational mesh. The application of high-order flux reconstruction techniques offers promising potential in alleviating these challenges. In contrast to other high-order methods, the flux reconstruction is combined with the lattice Boltzmann flux solver in this study. The current method evaluates the common inviscid flux at the cell interface by locally reconstructing the lattice Boltzmann equation solution from macroscopic flow variables at solution points. Consequently, this framework performs a positivity-preserving, entropy-based adaptive filtering method for shock capturing. The present approach is validated by simulating the double Mach reflection, and then simulating some typical viscous problems. The results demonstrate that the current method accurately predicts aerodynamic coefficients and heat transfer, providing valuable insights into the application of high-order methods for shock wave/boundary layer interaction.
Publisher
Springer Science and Business Media LLC
Reference48 articles.
1. Gadd GE, Holder DW, Regan JD (1954) An experimental investigation of the interaction between shock waves and boundary layers. Proc R Soc A Math Phys Eng Sci 226(1165):227–253
2. Hakkinen RJ, Greber I, Trilling L et al (1959) The interaction of an oblique shock wave with a laminar boundary layer. NASA Memo NASA-MEMO-2-18-59W
3. Needham DA, Stollery JL (1966) Boundary layer separation in hypersonic flow. In: 3rd and 4th aerospace sciences meeting, New York, 24-26 January 1966
4. Elena M, Lacharme JP (1988) Experimental study of a supersonic turbulent boundary layer using a laser Doppler anemometer. J Mec Theor Appl 7:175–190
5. Settles GS, Fitzpatrick TJ, Bogdonoff SM (1979) Detailed study of attached and separated compression corner flowfields in high Reynolds number supersonic flow. AIAA J 17:579–585