High-order compact gas-kinetic schemes for three-dimensional flow simulations on tetrahedral mesh

Author:

Zhao Fengxiang,Ji Xing,Shyy Wei,Xu KunORCID

Abstract

AbstractA general framework for the development of high-order compact schemes has been proposed recently. The core steps of the schemes are composed of the following. 1). Based on a kinetic model equation, from a generalized initial distribution of flow variables construct a time-accurate evolution solution of gas distribution function at a cell interface and obtain the corresponding flux function; 2). Introduce the WENO-type weighting functions into the high-order time-derivative of the cell interface flux function in the multistage multi-derivative (MSMD) time stepping scheme to cope with the possible impingement of a shock wave on a cell interface within a time step, and update the cell-averaged conservative flow variables inside each control volume; 3). Model the time evolution of the gas distribution function on both sides of a cell interface separately, take moments of the inner cell interface gas distribution function to get flow variables, and update the cell-averaged gradients of flow variables inside each control volume; 4). Based on the cell-averaged flow variables and their gradients, develop compact initial data reconstruction to get initial condition of flow distributions at the beginning of next time step. A compact gas-kinetic scheme (GKS) up to sixth-order accuracy in space and fourth-order in time has been constructed on 2D unstructured mesh. In this paper, the compact GKS up to fourth-order accuracy on three-dimensional tetrahedral mesh will be further constructed with the focus on the WENO-type initial compact data reconstruction. Nonlinear weights are designed to achieve high-order accuracy for the smooth Navier-Stokes solution and keep super robustness in 3D computation with strong shock interactions. The fourth-order compact GKS uses a large time step with a CFL number 0.6 in the simulations from subsonic to hypersonic flow. A series of test cases are used to validate the scheme. The high-order compact GKS can be used in 3D applications with complex geometry.

Funder

Hong Kong research grant council

Center for Ocean Research in Hong Kong and Macau

National Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Aerospace Engineering,Modeling and Simulation,Renewable Energy, Sustainability and the Environment,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3