Author:
Zhang Jingling,Su Yongfu,Cheng Qingqing
Abstract
Abstract
Let E be a uniformly convex and uniformly smooth Banach space, let C be a nonempty closed convex subset of E, let
{
T
n
}
:
C
→
C
be a countable family of weak relatively nonexpansive mappings such that
F
=
⋂
n
=
1
∞
F
(
T
n
)
≠
∅
. For any given gauss
x
0
∈
C
, define a sequence
{
x
n
}
in C by the following algorithm:
{
C
0
=
C
,
C
n
+
1
=
{
z
∈
C
n
:
ϕ
(
z
,
T
n
x
n
)
=
ϕ
(
z
,
x
n
)
}
,
n
=
0
,
1
,
2
,
3
,
…
,
x
n
+
1
=
Π
C
n
+
1
x
0
.
Then
{
x
n
}
converges strongly to
q
=
Π
F
x
0
.
MSC:47H05, 47H09, 47H10.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Geometry and Topology
Reference36 articles.
1. Butnariu D, Reich S, Zaslavski AJ: Weak convergence of orbits of nonlinear operators in reflexive Banach spaces. Numer. Funct. Anal. Optim. 2003, 24: 489–508. 10.1081/NFA-120023869
2. Ishikawa S: Fixed points by a new iteration method. Proc. Am. Math. Soc. 1974, 44: 147–150. 10.1090/S0002-9939-1974-0336469-5
3. Reich S: Review of geometry of Banach spaces duality mappings and nonlinear problems by Ioana Cioranescu, Kluwer Academic, Dordrecht, 1990. Bull. Am. Math. Soc. 1992, 26: 367–370. 10.1090/S0273-0979-1992-00287-2
4. Takahashi W: Nonlinear Functional Analysis. Yokohama-Publishers, Yokohama; 2000.
5. Reich S: A weak convergence theorem for the alternating method with Bregman distance. In Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Edited by: Kartsatos AG. Dekker, New York; 1996:313–318.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献