A role of multi-modal rhythms in physical interaction and cooperation

Author:

Yonekura Kenta,Kim Chyon Hae,Nakadai Kazuhiro,Tsujino Hiroshi,Sugano Shigeki

Abstract

Abstract As fundamental research for human-robot interaction, this paper addresses the rhythmic reference of a human while turning a rope with another human. We hypothyzed that when interpreting rhythm cues to make a rhythm reference, humans will use auditory and force rhythms more than visual ones. We examined 21-23 years old test subjects. We masked perception of each test subject using 3 kinds of masks, an eye-mask, headphones, and a force mask. The force mask is composed of a robot arm and a remote controller. These instruments allow a test subject to turn a rope without feeling force from the rope. In the first experiment, each test subject interacted with an operator that turned a rope with a constant rhythm. 8 experiments were conducted for each test subject that wore combinations of masks. We measured the angular velocity of force between a test subject/the operator and a rope. We calculated error between the angular velocities of the force directions, and validated the error. In the second experiment, two test subjects interacted with each other. 1.6 - 2.4 Hz auditory rhythm was presented from headphones so as to inform target turning frequency. Addition to the auditory rhythm, the test subjects wore eye-masks. The first experiment showed that visual rhythm has little influence on rope-turning cooperation between humans. The second experiment provided firmer evidence for the same hypothesis because humans neglected their visual rhythms.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Acoustics and Ultrasonics

Reference20 articles.

1. Science and Engineering Research Laboratory: Special Issue on Wabot-2. Bull. No. 112 (Waseda University, Tokyo, 1985), (authors unknown)

2. Nakazawa A, Nakaoka S, Ikeuchi K, Yokoi K: Imitating human dance motions through motion structure analysis. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (Lausanne) 2002, 3: 2539-2544.

3. Shibuya K, Sugano S: The effect of KANSEI information on human motion - basic model of KANSEI and analysis of human motion in violin playing. Proceedings of the IEEE International Workshop on Robot and Human Communication (Tokyo) 1995, 89-94.

4. Shibuya K, Matsuda S, Takahara A: Toward developing a violin playing robot - bowing by anthropomorphic robot arm and sound analysis. Proceedings of the IEEE International Symposium on Robot and Human Interactive Communication (Jeju island) 2007, 763-768.

5. Kotosaka S, Schaal S: Synchronized robot drumming by neural oscillators. Proceedings of the International Symposium Adaptive Motion of Animals and Machines (Montreal) 2000.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An audiovisual interface-based drumming system for multimodal human–robot interaction;Journal on Multimodal User Interfaces;2020-11-13

2. Sound event aware environmental sound segmentation with Mask U-Net;Advanced Robotics;2020-10-05

3. Multi-channel Environmental sound segmentation;2020 IEEE/SICE International Symposium on System Integration (SII);2020-01

4. Fast and Robust 3-D Sound Source Localization with DSVD-PHAT;2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2019-11

5. Environmental sound segmentation utilizing Mask U-Net;2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2019-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3