Author:
Wu Kuo-Hau,Chen Chia-Ping,Yeh Bing-Feng
Abstract
Abstract
In this article, a novel technique based on the empirical mode decomposition methodology for processing speech features is proposed and investigated. The empirical mode decomposition generalizes the Fourier analysis. It decomposes a signal as the sum of intrinsic mode functions. In this study, we implement an iterative algorithm to find the intrinsic mode functions for any given signal. We design a novel speech feature post-processing method based on the extracted intrinsic mode functions to achieve noise-robustness for automatic speech recognition. Evaluation results on the noisy-digit Aurora 2.0 database show that our method leads to significant performance improvement. The relative improvement over the baseline features increases from 24.0 to 41.1% when the proposed post-processing method is applied on mean-variance normalized speech features. The proposed method also improves over the performance achieved by a very noise-robust frontend when the test speech data are highly mismatched.
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Acoustics and Ultrasonics
Reference15 articles.
1. Boll S: Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans Acoust Speech Signal Process 1979,27(2):113-120. 10.1109/TASSP.1979.1163209
2. Berstein A, Shallom I: A hypothesized Wiener filtering approach to noisy speech recognition, in. ICASSP 1991, 913-916.
3. Zhu W, O'Shaughnessy D: Incorporating frequency masking filtering in a standard MFCC feature extraction algorithm, in. Proceedings of the IEEE International Conference on Signal Processing 2004, 617-620.
4. Strope B, Alwan A: A model of dynamic auditory perception and its application to robust word recognition. IEEE Trans Speech Audio Process 1997,5(5):451-464. 10.1109/89.622569
5. Furui S: Cepstral analysis technique for automatic speaker verification. IEEE Trans Acoust Speech Signal Process 1981,29(2):254-272. 10.1109/TASSP.1981.1163530
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献