Author:
Chen Xia,Xue Huidan,Zhu Liping,Wang Huiqin,Long Hao,Zhao Jun,Meng Funing,Liu Yunfei,Ye Yuan,Luo Xiaomin,Liu Zhi,Xiao Guanghui,Zhu Shengwei
Abstract
Abstract
Background
Heat stress is a major abiotic stress affecting the growth and development of plants, including crop species. Plants have evolved various adaptive strategies to help them survive heat stress, including maintaining membrane stability, encoding heat shock proteins (HSPs) and ROS-scavenging enzymes, and inducing molecular chaperone signaling. Brassinosteroids (BRs) are phytohormones that regulate various aspects of plant development, which have been implicated also in plant responses to heat stress, and resistance to heat in Arabidopsis thaliana is enhanced by adding exogenous BR. Brassinazole resistant 1 (BZR1), a transcription factor and positive regulator of BR signal, controls plant growth and development by directly regulating downstream target genes. However, the molecular mechanism at the basis of BR-mediated heat stress response is poorly understood. Here, we report the identification of a new factor critical for BR-regulated heat stress tolerance.
Results
We identified ERF49 in a genetic screen for proteins required for BR-regulated gene expression. We found that ERF49 is the direct target gene of BZR1 and that overexpressing ERF49 enhanced sensitivity of transgenic plants to heat stress. The transcription levels of heat shock factor HSFA2, heat stress-inducible gene DREB2A, and three heat shock protein (HSP) were significantly reduced under heat stress in ERF49-overexpressed transgenic plants. Transcriptional activity analysis in protoplast revealed that BZR1 inhibits ERF49 expression by binding to the promoter of ERF49. Our genetic analysis showed that dominant gain-of-function brassinazole resistant 1-1D mutant (bzr1-1D) exhibited lower sensitivity to heat stress compared with wild-type. Expressing ERF49-SRDX (a dominant repressor reporter of ERF49) in bzr1-1D significantly decreased the sensitivity of ERF49-SRDX/bzr1-1D transgenic plants to heat stress compared to bzr1-1D.
Conclusions
Our data provide clear evidence that BR increases thermotolerance of plants by repressing the expression of ERF49 through BZR1, and this process is dependent on the expression of downstream heat stress-inducible genes. Taken together, our work reveals a novel molecular mechanism mediating plant response to high temperature stress.
Funder
National Key Research and Development Program
Hainan Yazhou Bay seed laboratory top-ranking project
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Reference65 articles.
1. Shekhawat K, Almeida-Trapp M, García-Ramírez GX, Hirt H. Beat the heat: plant- and microbe-mediated strategies for crop thermotolerance. Trends Plant Sci. 2022;27:802–13.
2. Li B, Gao K, Ren H, Tang W. Molecular mechanisms governing plant responses to high temperatures. J Integr Plant Biol. 2018;60:757–79.
3. Howarth CJ. Genetic improvements of tolerance to high temperature. In: Ashraf M, Harris PJC, editors. abiotic stresses: plant resistance through breeding and molecular approaches. New York: Howarth Press; 2005. p. 277–300.
4. Sakata T, Oshino T, Miura S, Tomabechi M, Tsunaga Y, Higashitani N, et al. Auxins reverse plant male sterility caused by high temperatures. Proc Natl Acad Sci U S A. 2010;107:8569–74.
5. Bi A, Wang T, Wang G, Zhang L, Wassie M, Amee M, et al. Stress memory gene FaHSP17.8-CII controls thermotolerance via remodeling PSII and ROS signaling in tall fescue. Plant Physiol. 2021;187:1163–76.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献