Author:
Niu Mengting,Wang Chunyu,Zhang Zhanguo,Zou Quan
Abstract
Abstract
Background
Circular RNAs (circRNAs) have been confirmed to play a vital role in the occurrence and development of diseases. Exploring the relationship between circRNAs and diseases is of far-reaching significance for studying etiopathogenesis and treating diseases. To this end, based on the graph Markov neural network algorithm (GMNN) constructed in our previous work GMNN2CD, we further considered the multisource biological data that affects the association between circRNA and disease and developed an updated web server CircDA and based on the human hepatocellular carcinoma (HCC) tissue data to verify the prediction results of CircDA.
Results
CircDA is built on a Tumarkov-based deep learning framework. The algorithm regards biomolecules as nodes and the interactions between molecules as edges, reasonably abstracts multiomics data, and models them as a heterogeneous biomolecular association network, which can reflect the complex relationship between different biomolecules. Case studies using literature data from HCC, cervical, and gastric cancers demonstrate that the CircDA predictor can identify missing associations between known circRNAs and diseases, and using the quantitative real-time PCR (RT-qPCR) experiment of HCC in human tissue samples, it was found that five circRNAs were significantly differentially expressed, which proved that CircDA can predict diseases related to new circRNAs.
Conclusions
This efficient computational prediction and case analysis with sufficient feedback allows us to identify circRNA-associated diseases and disease-associated circRNAs. Our work provides a method to predict circRNA-associated diseases and can provide guidance for the association of diseases with certain circRNAs. For ease of use, an online prediction server (http://server.malab.cn/CircDA) is provided, and the code is open-sourced (https://github.com/nmt315320/CircDA.git) for the convenience of algorithm improvement.
Funder
National Natural Science Foundation of China
the National Key R&D Program of China
Research fund of Shenzhen Polytechnic University
Key Field of Department of Education of Guangdong Province
the Special Science Foundation of Quzhou
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献