Abstract
Abstract
Background
Polypoidal choroidal vasculopathy (PCV), a subtype of age-related macular degeneration (AMD), is a global leading cause of vision loss in older populations. Distinct from typical AMD, PCV is characterized by polyp-like dilatation of blood vessels and turbulent blood flow in the choroid of the eye. Gold standard anti-vascular endothelial growth factor (anti-VEGF) therapy often fails to regress polypoidal lesions in patients. Current animal models have also been hampered by their inability to recapitulate such vascular lesions. These underscore the need to identify VEGF-independent pathways in PCV pathogenesis.
Results
We cultivated blood outgrowth endothelial cells (BOECs) from PCV patients and normal controls to serve as our experimental disease models. When BOECs were exposed to heterogeneous flow, single-cell transcriptomic analysis revealed that PCV BOECs preferentially adopted migratory-angiogenic cell state, while normal BOECs undertook proinflammatory cell state. PCV BOECs also had a repressed protective response to flow stress by demonstrating lower mitochondrial functions. We uncovered that elevated hyaluronidase-1 in PCV BOECs led to increased degradation of hyaluronan, a major component of glycocalyx that interfaces between flow stress and vascular endothelium. Notably, knockdown of hyaluronidase-1 in PCV BOEC improved mechanosensitivity, as demonstrated by a significant 1.5-fold upregulation of Krüppel-like factor 2 (KLF2) expression, a flow-responsive transcription factor. Activation of KLF2 might in turn modulate PCV BOEC migration. Barrier permeability due to glycocalyx impairment in PCV BOECs was also reversed by hyaluronidase-1 knockdown. Correspondingly, hyaluronidase-1 was detected in PCV patient vitreous humor and plasma samples.
Conclusions
Hyaluronidase-1 inhibition could be a potential therapeutic modality in preserving glycocalyx integrity and endothelial stability in ocular diseases with vascular origin.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Reference81 articles.
1. Wong RL, Lai TY. Polypoidal choroidal vasculopathy: an update on therapeutic approaches. J Ophthalmic Vis Res. 2013;8(4):359–71.
2. Yuzawa M, Mori R, Kawamura A. The origins of polypoidal choroidal vasculopathy. Br J Ophthalmol. 2005;89(5):602–7.
3. Yannuzzi LA, Wong DWK, Sforzolini BS, Goldbaum M, Tang KC, Spaide RF, et al. Polypoidal choroidal vasculopathy and neovascularized age-related macular degeneration. Arch Ophthalmol. 1999;117(11):1503–10.
4. Yannuzzi LA, Sorenson J, Spaide RF, Lipson B. Idiopathic polypoidal choroidal vasculopathy (IPCV). Retina. 1990;10(1):1–8.
5. Cheung CMG, Lai TY, Ruamviboonsuk P, Chen S-J, Chen Y, Freund KB, et al. Polypoidal choroidal vasculopathy: definition, pathogenesis, diagnosis, and management. Ophthalmology. 2018;125(5):708–24.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献