The dynamics of deltamethrin resistance evolution in Aedes albopictus has an impact on fitness and dengue virus type-2 vectorial capacity

Author:

Guo Yijia,Hu Ke,Zhou Jingni,Xie Zhensheng,Zhao Yijie,Zhao Siyu,Gu Jinbao,Zhou Xiaohong,Yan Guiyun,James Anthony A.ORCID,Chen Xiao-GuangORCID

Abstract

Abstract Background Worldwide invasion and expansion of Aedes albopictus, an important vector of dengue, chikungunya, and Zika viruses, has become a serious concern in global public health. Chemical insecticides are the primary means currently available to control the mosquito populations. However, long-term and large-scale use of insecticides has selected for resistance in the mosquito that is accompanied by a genetic load that impacts fitness. Results A number of laboratory strains representing different resistance mechanisms were isolated and identified from laboratory-derived, deltamethrin-resistant Ae. albopictus recovered in previous work. Resistance levels and fitness costs of the strains were evaluated and compared to characterize the evolution of the resistance genotypes and phenotypes. The heterozygous F1534S mutation (1534F/S) in the voltage gated sodium channel (vgsc) gene product (VGSC), first detected in early stages of resistance evolution, not only confers high-level resistance, but also produces no significant fitness costs, leading to the rapid spread of resistance in the population. This is followed by the increase in frequency of homozygous F1534S (1534S/S) mosquitoes that have significant fitness disadvantages, prompting the emergence of an unlinked I1532T mutation with fewer side effects and a mating advantage better adapted to the selection and reproductive pressures imposed in the experiments. Metabolic resistance with no significant fitness cost and mediating a high-tolerance resistance phenotype may play a dominant role in the subsequent evolution of resistance. The different resistant strains had similar vector competence for dengue virus type-2 (DENV-2). Furthermore, a comparative analysis of vectorial capacity revealed that increased survival due to deltamethrin resistance balanced the negative fitness cost effects and contributed to the risk of dengue virus (DENV) transmission by resistant populations. The progressive evolution of resistance results in mosquitoes with both target-site insensitivity and metabolic resistance with lower fitness costs, which further leads to resistant populations with both high resistance levels and vectorial capacity. Conclusions This study reveals a possible mechanism for the evolution of deltamethrin resistance in Aedes albopictus. These findings will help guide practical strategies for insecticide use, resistance management and the prevention and control of mosquito-borne disease.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3