Extreme mobility of the world’s largest flying mammals creates key challenges for management and conservation

Author:

Welbergen Justin A.ORCID,Meade Jessica,Field Hume E.,Edson Daniel,McMichael Lee,Shoo Luke P.,Praszczalek Jenny,Smith Craig,Martin John M.

Abstract

Abstract Background Effective conservation management of highly mobile species depends upon detailed knowledge of movements of individuals across their range; yet, data are rarely available at appropriate spatiotemporal scales. Flying-foxes (Pteropus spp.) are large bats that forage by night on floral resources and rest by day in arboreal roosts that may contain colonies of many thousands of individuals. They are the largest mammals capable of powered flight, and are highly mobile, which makes them key seed and pollen dispersers in forest ecosystems. However, their mobility also facilitates transmission of zoonotic diseases and brings them in conflict with humans, and so they require a precarious balancing of conservation and management concerns throughout their Old World range. Here, we analyze the Australia-wide movements of 201 satellite-tracked individuals, providing unprecedented detail on the inter-roost movements of three flying-fox species: Pteropus alecto, P. poliocephalus, and P. scapulatus across jurisdictions over up to 5 years. Results Individuals were estimated to travel long distances annually among a network of 755 roosts (P. alecto, 1427–1887 km; P. poliocephalus, 2268–2564 km; and P. scapulatus, 3782–6073 km), but with little uniformity among their directions of travel. This indicates that flying-fox populations are composed of extremely mobile individuals that move nomadically and at species-specific rates. Individuals of all three species exhibited very low fidelity to roosts locally, resulting in very high estimated daily colony turnover rates (P. alecto, 11.9 ± 1.3%; P. poliocephalus, 17.5 ± 1.3%; and P. scapulatus, 36.4 ± 6.5%). This indicates that flying-fox roosts form nodes in a vast continental network of highly dynamic “staging posts” through which extremely mobile individuals travel far and wide across their species ranges. Conclusions The extreme inter-roost mobility reported here demonstrates the extent of the ecological linkages that nomadic flying-foxes provide across Australia’s contemporary fragmented landscape, with profound implications for the ecosystem services and zoonotic dynamics of flying-fox populations. In addition, the extreme mobility means that impacts from local management actions can readily reverberate across jurisdictions throughout the species ranges; therefore, local management actions need to be assessed with reference to actions elsewhere and hence require national coordination. These findings underscore the need for sound understanding of animal movement dynamics to support evidence-based, transboundary conservation and management policy, tailored to the unique movement ecologies of species.

Funder

Australian Research Council

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3