Author:
Kassab Muzaffer Ahmad,Chen Yibin,Wang Xin,He Bo,Brown Eric J.,Yu Xiaochun
Abstract
Abstract
Background
RNA–DNA hybrids or R-loops are associated with deleterious genomic instability and protective immunoglobulin class switch recombination (CSR). However, the underlying phenomenon regulating the two contrasting functions of R-loops is unknown. Notably, the underlying mechanism that protects R-loops from classic RNase H-mediated digestion thereby promoting persistence of CSR-associated R-loops during CSR remains elusive.
Results
Here, we report that during CSR, R-loops formed at the immunoglobulin heavy (IgH) chain are modified by ribose 2′-O-methylation (2′-OMe). Moreover, we find that 2′-O-methyltransferase fibrillarin (FBL) interacts with activation-induced cytidine deaminase (AID) associated snoRNA aSNORD1C to facilitate the 2′-OMe. Moreover, deleting AID C-terminal tail impairs its association with aSNORD1C and FBL. Disrupting FBL, AID or aSNORD1C expression severely impairs 2′-OMe, R-loop stability and CSR. Surprisingly, FBL, AID’s interaction partner and aSNORD1C promoted AID targeting to the IgH locus.
Conclusion
Taken together, our results suggest that 2′-OMe stabilizes IgH-associated R-loops to enable productive CSR. These results would shed light on AID-mediated CSR and explain the mechanism of R-loop-associated genomic instability.
Publisher
Springer Science and Business Media LLC