An updated tribal classification of Lamiaceae based on plastome phylogenomics
-
Published:2021-01-08
Issue:1
Volume:19
Page:
-
ISSN:1741-7007
-
Container-title:BMC Biology
-
language:en
-
Short-container-title:BMC Biol
Author:
Zhao Fei,Chen Ya-Ping,Salmaki Yasaman,Drew Bryan T.,Wilson Trevor C.,Scheen Anne-Cathrine,Celep Ferhat,Bräuchler Christian,Bendiksby Mika,Wang Qiang,Min Dao-Zhang,Peng Hua,Olmstead Richard G.,Li Bo,Xiang Chun-Lei
Abstract
AbstractBackgroundA robust molecular phylogeny is fundamental for developing a stable classification and providing a solid framework to understand patterns of diversification, historical biogeography, and character evolution. As the sixth largest angiosperm family, Lamiaceae, or the mint family, consitutes a major source of aromatic oil, wood, ornamentals, and culinary and medicinal herbs, making it an exceptionally important group ecologically, ethnobotanically, and floristically. The lack of a reliable phylogenetic framework for this family has thus far hindered broad-scale biogeographic studies and our comprehension of diversification. Although significant progress has been made towards clarifying Lamiaceae relationships during the past three decades, the resolution of a phylogenetic backbone at the tribal level has remained one of the greatest challenges due to limited availability of genetic data.ResultsWe performed phylogenetic analyses of Lamiaceae to infer relationships at the tribal level using 79 protein-coding plastid genes from 175 accessions representing 170 taxa, 79 genera, and all 12 subfamilies. Both maximum likelihood and Bayesian analyses yielded a more robust phylogenetic hypothesis relative to previous studies and supported the monophyly of all 12 subfamilies, and a classification for 22 tribes, three of which are newly recognized in this study. As a consequence, we propose an updated phylogenetically informed tribal classification for Lamiaceae that is supplemented with a detailed summary of taxonomic history, generic and species diversity, morphology, synapomorphies, and distribution for each subfamily and tribe.ConclusionsIncreased taxon sampling conjoined with phylogenetic analyses based on plastome sequences has provided robust support at both deep and shallow nodes and offers new insights into the phylogenetic relationships among tribes and subfamilies of Lamiaceae. This robust phylogenetic backbone of Lamiaceae will serve as a framework for future studies on mint classification, biogeography, character evolution, and diversification.Graphical abstract
Funder
Yunnan Fundamental Research Projects
Ten Thousand Talents Program of Yunnan
CAS “Light of West China” program
Australian Biological Resources Study National Taxonomy Research Grant Program
Postdoctoral Research Program
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Reference227 articles.
1. Harley RM, Atkins S, Budantsev AL, Cantino PD, Conn BJ, Grayer R, et al. Labiatae. In: Kadereit JW, editor. The families and genera of vascular plants, vol. 7. Berlin: Springer Verlag; 2004. p. 167–275.
2. Olmstead RG. A synoptical classification of the Lamiales, version 2.6.2. 2016. http://depts.washington.edu/phylo/Classification.pdf. Accessed 25 Feb 2020. (last updated 12 April, 2016).
3. APG IV. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc. 2016;181:1–20.
4. Bentham G. Verbenaceae and Labiatae. In: Bentham G, Hooker JD, editors. Genera plantarum. London: Reeve; 1876. p. 1131–223.
5. Briquet J. Verbenaceae, Labiatae. In: HGA E, KAE P, editors. Die Natürlichen Pflanzenfamilien. Berlin: Engelmann, W; 1897. p. 132–375.
Cited by
166 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献