Chromosome-level genome assemblies of four wild peach species provide insights into genome evolution and genetic basis of stress resistance

Author:

Cao Ke,Peng Zhen,Zhao Xing,Li Yong,Liu Kuozhan,Arus Pere,Fang Weichao,Chen Changwen,Wang Xinwei,Wu Jinlong,Fei Zhangjun,Wang Lirong

Abstract

Abstract Background Peach (Prunus persica) is an economically important stone fruit crop in Rosaceae and widely cultivated in temperate and subtropical regions, emerging as an excellent material to study the interaction between plant and environment. During its genus, there are four wild species of peach, all living in harsh environments. For example, one of the wild species, P. mira, originates from the Qinghai-Tibet Plateau (QTP) and exhibits strong cold/ultraviolet ray environmental adaptations. Although remarkable progresses in the gene discovery of fruit quality-related traits in peach using previous assembled genome were obtained, genomic basis of the response of these wild species to different geographical environments remains unclear. Results To uncover key genes regulating adaptability in different species and analyze the role of genetic variations in resistance formation, we performed de novo genome assembling of four wild relatives of peach (P. persica), P. mira, P. davidiana, P. kansuensis, and P. ferganensis and resequenced 175 peach varieties. The phylogenetic tree showed that the divergence time of P. mira and other wild relatives of peach was 11.5 million years ago, which was consistent with the drastic crustal movement of QTP. Abundant genetic variations were identified in four wild species when compared to P. persica, and the results showed that plant-pathogen interaction pathways were enriched in genes containing small insertions and deletions and copy number variations in all four wild relatives of peach. Then, the data were used to identify new genes and variations regulating resistance. For example, presence/absence variations which result from a hybridization event that occurred between P. mira and P. dulcis enhanced the resistance of their putative hybrid, P. davidiana. Using bulked segregant analysis, we located the nematode resistance locus of P. kansuensis in chromosome 2. Within the mapping region, a deletion in the promoter of one NBS-LRR gene was found to involve the resistance by regulating gene expression. Furthermore, combined with RNA-seq and selective sweeps analysis, we proposed that a deletion in the promoter of one CBF gene was essential for high-altitude adaptation of P. mira through increasing its resistance to low temperature. Conclusions In general, the reference genomes assembled in the study facilitate our understanding of resistance mechanism of perennial fruit crops, and provide valuable resources for future breeding and improvement.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3