Abstract
Abstract
Background
The symbiotic relationship between cnidarians and dinoflagellates is one of the most widespread endosymbiosis in our oceans and provides the ecological basis of coral reef ecosystems. Although many studies have been undertaken to unravel the molecular mechanisms underlying these symbioses, we still know little about the epigenetic mechanisms that control the transcriptional responses to symbiosis.
Results
Here, we used the model organism Exaiptasia diaphana to study the genome-wide patterns and putative functions of the histone modifications H3K27ac, H3K4me3, H3K9ac, H3K36me3, and H3K27me3 in symbiosis. While we find that their functions are generally conserved, we observed that colocalization of more than one modification and or DNA methylation correlated with significantly higher gene expression, suggesting a cooperative action of histone modifications and DNA methylation in promoting gene expression. Analysis of symbiosis genes revealed that activating histone modifications predominantly associated with symbiosis-induced genes involved in glucose metabolism, nitrogen transport, amino acid biosynthesis, and organism growth while symbiosis-suppressed genes were involved in catabolic processes.
Conclusions
Our results provide new insights into the mechanisms of prominent histone modifications and their interaction with DNA methylation in regulating symbiosis in cnidarians.
Funder
Red Sea Research Center, King Abdullah University of Science and Technology
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Reference77 articles.
1. Dubinsky Z, Stambler N. Coral reefs: an ecosystem. In: Transition. Netherlands: Springer; 2011.
2. Weis VM, Allemand D. What Determines Coral Health? Science. 2009;324:1153–5.
3. Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, et al. Coral reefs in the Anthropocene. Nature. 2017;546:82–90.
4. Hoegh-Guldberg O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res. 1999;50:839–66.
5. Davy SK, Allemand D, Weis WM. Cell Biology of Cnidarian-Dinoflagellate Symbiosis. Microbiol Mol Biol Rev. 2012;76:229–61.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献