Abstract
Abstract
Background
Bacterial resistance to antibiotics is a growing health problem that is projected to cause more deaths than cancer by 2050. Consequently, novel antibiotics are urgently needed. Since more than half of the available antibiotics target the structurally conserved bacterial ribosomes, factors involved in protein synthesis are thus prime targets for the development of novel antibiotics. However, experimental identification of these potential antibiotic target proteins can be labor-intensive and challenging, as these proteins are likely to be poorly characterized and specific to few bacteria. Here, we use a bioinformatics approach to identify novel components of protein synthesis.
Results
In order to identify these novel proteins, we established a Large-Scale Transcriptomic Analysis Pipeline in Crowd (LSTrAP-Crowd), where 285 individuals processed 26 terabytes of RNA-sequencing data of the 17 most notorious bacterial pathogens. In total, the crowd processed 26,269 RNA-seq experiments and used the data to construct gene co-expression networks, which were used to identify more than a hundred uncharacterized genes that were transcriptionally associated with protein synthesis. We provide the identity of these genes together with the processed gene expression data.
Conclusions
We identified genes related to protein synthesis in common bacterial pathogens and thus provide a resource of potential antibiotic development targets for experimental validation. The data can be used to explore additional vulnerabilities of bacteria, while our approach demonstrates how the processing of gene expression data can be easily crowd-sourced.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Reference63 articles.
1. Spellberg B, Blaser M, Guidos RJ, Boucher HW, Bradley JS, Eisenstein BI, et al. Combating antimicrobial resistance: policy recommendations to save lives. Clin Infect Dis. 2011;52(SUPPL. 5):S397–428.
2. Mah TFC, O’Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 2001;9:34–9.
3. Wilson DN. Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat Rev Microbiol. 2014;12:35–48.
4. Arenz S, Wilson DN. Bacterial protein synthesis as a target for antibiotic inhibition. Cold Spring Harb Perspect Med. 2016.
5. Dunkle JA, Xiong L, Mankin AS, Cate JHD. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc Natl Acad Sci U S A. 2010;6(9):a025361.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献