Ca2+ mobilization-dependent reduction of the endoplasmic reticulum lumen is due to influx of cytosolic glutathione

Author:

Lizák BeátaORCID,Birk Julia,Zana Melinda,Kosztyi Gergely,Kratschmar Denise V.,Odermatt Alex,Zimmermann Richard,Geiszt Miklós,Appenzeller-Herzog Christian,Bánhegyi Gábor

Abstract

Abstract Background The lumen of the endoplasmic reticulum (ER) acts as a cellular Ca2+ store and a site for oxidative protein folding, which is controlled by the reduced glutathione (GSH) and glutathione-disulfide (GSSG) redox pair. Although depletion of luminal Ca2+ from the ER provokes a rapid and reversible shift towards a more reducing poise in the ER, the underlying molecular basis remains unclear. Results We found that Ca2+ mobilization-dependent ER luminal reduction was sensitive to inhibition of GSH synthesis or dilution of cytosolic GSH by selective permeabilization of the plasma membrane. A glutathione-centered mechanism was further indicated by increased ER luminal glutathione levels in response to Ca2+ efflux. Inducible reduction of the ER lumen by GSH flux was independent of the Ca2+-binding chaperone calreticulin, which has previously been implicated in this process. However, opening the translocon channel by puromycin or addition of cyclosporine A mimicked the GSH-related effect of Ca2+ mobilization. While the action of puromycin was ascribable to Ca2+ leakage from the ER, the mechanism of cyclosporine A-induced GSH flux was independent of calcineurin and cyclophilins A and B and remained unclear. Conclusions Our data strongly suggest that ER influx of cytosolic GSH, rather than inhibition of local oxidoreductases, is responsible for the reductive shift upon Ca2+ mobilization. We postulate the existence of a Ca2+- and cyclosporine A-sensitive GSH transporter in the ER membrane. These findings have important implications for ER redox homeostasis under normal physiology and ER stress.

Funder

Nemzeti Kutatási, Fejlesztési és Innovaciós Alap

Nemzeti versenyképességi és kiválósági program

Swiis National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3