Author:
Yan Liping,Pape Thomas,Meusemann Karen,Kutty Sujatha Narayanan,Meier Rudolf,Bayless Keith M.,Zhang Dong
Abstract
Abstract
Background
Blowflies are ubiquitous insects, often shiny and metallic, and the larvae of many species provide important ecosystem services (e.g., recycling carrion) and are used in forensics and debridement therapy. Yet, the taxon has repeatedly been recovered to be para- or polyphyletic, and the lack of a well-corroborated phylogeny has prevented a robust classification.
Results
We here resolve the relationships between the different blowfly subclades by including all recognized subfamilies in a phylogenomic analysis using 2221 single-copy nuclear protein-coding genes of Diptera. Maximum likelihood (ML), maximum parsimony (MP), and coalescent-based phylogeny reconstructions all support the same relationships for the full data set. Based on this backbone phylogeny, blowflies are redefined as the most inclusive monophylum within the superfamily Oestroidea not containing Mesembrinellidae, Mystacinobiidae, Oestridae, Polleniidae, Sarcophagidae, Tachinidae, and Ulurumyiidae. The constituent subfamilies are re-classified as Ameniinae (including the Helicoboscinae, syn. nov.), Bengaliinae, Calliphorinae (including Aphyssurinae, syn. nov., Melanomyinae, syn. nov., and Toxotarsinae, syn. nov.), Chrysomyinae, Luciliinae, Phumosiinae, Rhiniinae stat. rev., and Rhinophorinae stat. rev. Metallic coloration in the adult is shown to be widespread but does not emerge as the most likely ground plan feature.
Conclusions
Our study provides the first phylogeny of oestroid calyptrates including all blowfly subfamilies. This allows settling a long-lasting controversy in Diptera by redefining blowflies as a well-supported monophylum, and blowfly classification is adjusted accordingly. The archetypical blowfly trait of carrion-feeding maggots most likely evolved twice, and the metallic color may not belong to the blowfly ground plan.
Funder
Beijing Forestry University Outstanding Young Talent Cultivation Project
National Natural Science Foundation of China
Postdoctoral Innovative Talents Support Program
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Reference88 articles.
1. Shakespeare W. A pleasant conceited comedie called, Loues labors lost. As it was presented before her Highnes this last Christmas. Newly corrected and augmented by W. Shakespere. London: William White for Cutbert Burby; 1598.
2. Papavero N, Pujol-Luz JR, Teixeira DM. From Homer to Redi: some historical notes about the problem of necrophagous blowflies’ reproduction. Arq Zool. 2010;41(2-4):153–70. https://doi.org/10.11606/issn.2176-7793.v41i2-4p153-170.
3. Hennig W. Diptera (Zweiflügler). In: Helmcke JG, Starck D, Wermuth H, editors. Handbuch der Zoologie. Berlin: Walter de Gruyter; 1973. p. 1–337. https://www.semanticscholar.org/paper/Hennig%2C-W.%3A-Diptera-(Zweifl%C3%BCgler).-In%3A-Handbuch-der-Schumann/0f3069e7fc652edc5186a25895a0080711e9cc92.
4. Whitaker IS, Twine C, Whitaker MJ, Welck M, Brown CS, Shandall A. Larval therapy from antiquity to the present day: mechanisms of action, clinical applications and future potential. Postgrad Med J. 2007;83(980):409–13. https://doi.org/10.1136/pgmj.2006.055905.
5. Rognes K. Revision of the frog fly genus Caiusa Surcouf, 1920 (Diptera, Calliphoridae), with a note on the identity of Plinthomyia emimelania Rondani, 1875. Zootaxa. 2015;3952(1):1–80. https://doi.org/10.11646/zootaxa.3952.1.1.