Lentiviral in situ targeting of stem cells in unperturbed intestinal epithelium

Author:

Garside George B.ORCID,Sandoval MadelineORCID,Beronja SlobodanORCID,Rudolph K. LenhardORCID

Abstract

Abstract Background Methods for the long-term in situ transduction of the unperturbed murine intestinal epithelium have not been developed in past research. Such a method could speed up functional studies and screens to identify genetic factors influencing intestinal epithelium biology. Here, we developed an efficient method achieving this long-sought goal. Results We used ultrasound-guided microinjections to transduce the embryonic endoderm at day 8 (E8.0) in utero. The injection procedure can be completed in 20 min and had a 100% survival rate. By injecting a small volume (0.1–0.2 μl) of concentrated virus, single shRNA constructs as well as lentiviral libraries can successfully be transduced. The new method stably and reproducibly targets adult intestinal epithelium, as well as other endoderm-derived organs such as the lungs, pancreas, liver, stomach, and bladder. Postnatal analysis of young adult mice indicates that single transduced cells at E8.0 gave rise to crypt fields that were comprised of 20–30 neighbouring crypts per crypt-field at 90 days after birth. Lentiviral targeting of ApcMin/+ mutant and wildtype mice revealed that heterozygous loss of Apc function suppresses the developmental normal growth pattern of intestinal crypt fields. This suppression of crypt field sizes did not involve a reduction of the crypt number per field, indicating that heterozygous Apc loss impaired the growth of individual crypts within the fields. Lentiviral-mediated shRNA knockdown of p53 led to an approximately 20% increase of individual crypts per field in both Apc+/+ and ApcMin/+ mice, associating with an increase in crypt size in ApcMin/+ mice but a slight reduction in crypt size in Apc+/+ mice. Overall, p53 knockdown rescued the reduction in crypt field size in Apc-mutant mice but had no effect on crypt field size in wildtype mice. Conclusions This study develops a novel technique enabling robust and reproducible in vivo targeting of intestinal stem cells in situ in the unperturbed intestinal epithelium across different regions of the intestine. In vivo somatic gene editing and genetic screening of lentiviral libraries has the potential to speed up discoveries and mechanistic understanding of genetic pathways controlling the biology of the intestinal epithelium during development and postnatal life. The here developed method enables such approaches.

Funder

DFG

European Research Council

National Institutes of Health

Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3