Abstract
Abstract
Background
The first crystal structure of the active μ opioid receptor (μOR) exhibited several unexplained features. The ligand BU72 exhibited many extreme deviations from ideal geometry, along with unexplained electron density. I previously showed that inverting the benzylic configuration resolved these problems, establishing revised stereochemistry of BU72 and its analog BU74. However, another problem remains unresolved: additional unexplained electron density contacts both BU72 and a histidine residue in the N-terminus, revealing the presence of an as-yet unidentified atom.
Results
These short contacts and uninterrupted density are inconsistent with non-covalent interactions. Therefore, BU72 and μOR form a covalent adduct, rather than representing two separate entities as in the original model. A subsequently proposed magnesium complex is inconsistent with multiple lines of evidence. However, oxygen fits the unexplained density well. While the structure I propose is tentative, similar adducts have been reported previously in the presence of reactive oxygen species. Moreover, known sources of reactive oxygen species were present: HEPES buffer, nickel ions, and a sequence motif that forms redox-active nickel complexes. This motif contacts the unexplained density. The adduct exhibits severe strain, and the tethered N-terminus forms contacts with adjacent residues. These forces, along with the nanobody used as a G protein substitute, would be expected to influence the receptor conformation. Consistent with this, the intracellular end of the structure differs markedly from subsequent structures of active μOR bound to Gi protein.
Conclusions
Later Gi-bound structures are likely to be more accurate templates for ligand docking and modelling of active G protein-bound μOR. The possibility of reactions like this should be considered in the choice of protein truncation sites and purification conditions, and in the interpretation of excess or unexplained density.
Publisher
Springer Science and Business Media LLC
Subject
Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献