A high-quality Buxus austro-yunnanensis (Buxales) genome provides new insights into karyotype evolution in early eudicots

Author:

Wang Zhenyue,Li Ying,Sun Pengchuan,Zhu Mingjia,Wang Dandan,Lu Zhiqiang,Hu Hongyin,Xu Renping,Zhang Jin,Ma Jianxiang,Liu Jianquan,Yang YongzhiORCID

Abstract

Abstract Background Eudicots are the most diverse group of flowering plants that compromise five well-defined lineages: core eudicots, Ranunculales, Proteales, Trochodendrales, and Buxales. However, the phylogenetic relationships between these five lineages and their chromosomal evolutions remain unclear, and a lack of high-quality genome analyses for Buxales has hindered many efforts to address this knowledge gap. Results Here, we present a high-quality chromosome-level genome of Buxus austro-yunnanensis (Buxales). Our phylogenomic analyses revealed that Buxales and Trochodendrales are genetically similar and classified as sisters. Additionally, both are sisters to the core eudicots, while Ranunculales was found to be the first lineage to diverge from these groups. Incomplete lineage sorting and hybridization were identified as the main contributors to phylogenetic discordance (34.33%) between the lineages. In fact, B. austro-yunnanensis underwent only one whole-genome duplication event, and collinear gene phylogeny analyses suggested that separate independent polyploidizations occurred in the five eudicot lineages. Using representative genomes from these five lineages, we reconstructed the ancestral eudicot karyotype (AEK) and generated a nearly gapless karyotype projection for each eudicot species. Within core eudicots, we recovered one common chromosome fusion event in asterids and malvids, respectively. Further, we also found that the previously reported fused AEKs in Aquilegia (Ranunculales) and Vitis (core eudicots) have different fusion positions, which indicates that these two species have different karyotype evolution histories. Conclusions Based on our phylogenomic and karyotype evolution analyses, we revealed the likely relationships and evolutionary histories of early eudicots. Ultimately, our study expands genomic resources for early-diverging eudicots.

Funder

Science Fund for Creative Research Groups of Gansu Province

Key Laboratory in Science and Technology Development Project of Suzhou

International Collaboration 111 Programme

Strategic Priority Research Program of Chinese Academy of Sciences

Ph.D. Programs Foundation of Department of Education of Gansu

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Developmental Biology,Plant Science,General Agricultural and Biological Sciences,General Biochemistry, Genetics and Molecular Biology,Physiology,Ecology, Evolution, Behavior and Systematics,Structural Biology,Biotechnology

Reference119 articles.

1. Drinnan AN, Crane PR, Hoot SB. Patterns of floral evolution in the early diversification of non-magnoliid dicotyledons (eudicots) BT - Early Evolution of Flowers. Vienna: Springer Vienna; 1994.

2. Purcell A. Basic biology: an introduction. New Zealand: New Zealand ISBN Agency, National Library of New Zealand; 2018.

3. Chase MW, Christenhusz MJM, Fay MF, Byng JW, Judd WS, Soltis DE, et al. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc. 2016;181:1–20.

4. Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ. Plant systematics: a phylogenetic approach. Ecol Mediterr. 1999;25:215.

5. Ronse De Craene LP. Eudicots. Chichester: Wiley; 2012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3